




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西太原市育英中学7年级数学下册变量之间的关系定向测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是()①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量A.1个 B.2个 C.3个 D.4个2、已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如表所示:温度℃﹣20﹣100102030传播速度/(m/s)319325331337343349下列说法错误的是()A.自变量是温度,因变量是传播速度B.温度越高,传播速度越快C.当温度为10℃时,声音5s可以传播1655mD.温度每升高10℃,传播速度增加6m/s3、函数中自变量x的取值范围是()A. B. C. D.4、世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是()A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量,0.6元/千瓦时是常量.5、在圆周长计算公式中,对半径不同的圆,变量有()A. B. C. D.6、下表是研究弹簧长度与所挂物体质量关系的实验表格:所挂物体重量x(kg)12345弹簧长度y(cm)1012141618则弹簧不挂物体时的长度为().A.4cm B.6cm C.8cm D.10cm7、在圆的面积计算公式,其中为圆的半径,则变量是()A. B. C., D.,8、甲以每小时30km的速度行驶时,他所走的路程s(km)与时间t(h)之间的关系式可表示为s=30t,则下列说法正确的是()A.数30和s,t都是变量B.s是常量,数30和t是变量C.数30是常量,s和t是变量D.t是常量,数30和s是变量9、从地面竖直向上抛射一个物体,经测量,在落地之前,物体向上的速度v(m/s)与运动时间t(s)之间有如下的对应关系,则速度v与时间t之间的函数关系式可能是()v(m/s)25155﹣5t(s)0123A.v=25t B.v=﹣10t+25 C.v=t2+25 D.v=5t+1010、下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、把一个函数的自变量与对应的函数的值分别作为点的___坐标和___坐标,在直角坐标系中描出它的对应点,___的图形叫做这个函数的图象.2、邓教师设计一个计算程序,输入和输出的数据如表所示,当输入数据是正整数n时,输出的数据是________.输入数据123456……输出数据……3、某种储蓄的月利率是,存入元本金后,则本息和(元)与所存月数之间的关系式为____(不考虑利息税).4、一个梯形的高为8厘米,上底长为5厘米,当梯形下底x(厘米)由长变短时,梯形的面积y(厘米)也随之发生变化,请写出y与x之间的关系式________.5、小颖准备乘出租车到距家超过3km的科技馆参观,出租车的收费标准如下:里程数/km收费/元3km以内(含3km)8.003km以外每增加1km1.80则小颖应付车费y(元)与行驶里程数x(km)之间的关系式为____.6、如图所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为_______.7、矩形的周长为50,宽是,长是,则=____.8、小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢,如图所示,现在小明让小强先跑_______米,直线__________表示小明的路程与时间的关系,大约_______秒时,小明追上了小强,小强在这次赛跑中的速度是________.9、拖拉机耕地,油箱内装有油42升,如果每小时耗油5升,写出所剩油量w(升)与时间t(小时)之间的函数关系式___,其中___是常量,___是变量.10、某物流公司的快递车和货车每天沿同一条路线往返于A、B两地,快递车比货车多往返一趟.如图所示,表示货车距离A地的路程y(单位:h)与所用时间x(单位h)的图像,其间在B地装卸货物2h.已知快递车比货车早1h出发,最后一次返回A地比货车晚1h.若快递车往返途中速度不变,且在A、B两地均不停留,则两车在往返途中相遇的次数为________次.三、解答题(6小题,每小题10分,共计60分)1、在等腰梯形ABCD中,AD∥BC,AB=CD,梯形的周长为28,底角为30°,高AH=,上下底的和为,写出与之间的函数关系式.2、某路公交车每月有人次乘坐,每月的收入为元,每人次乘坐的票价相同,下面的表格是与的部分数据./人次50010001500200025003000…/元1000200040006000…(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请将表格补充完整.(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润收入支出费用)3、星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?4、某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据,计算平均每个人的车费是_______元;(3)写出利润y与乘车人数x之间的关系式;(4)若5月份想获得利润5000元,请你估计乘客量需要达到多少人?5、某广场用如图1所示的同一种地砖拼图案,第一次拼成的图案如图2所示,共用地砖4块;第2次拼成的图案如图3所示,共用地砖;第3次拼成的图案如图4所示,共用地砖,….(1)直接写出第4次拼成的图案共用地砖________块;(2)按照这样的规律,设第次拼成的图案共用地砖的数量为块,求与之间的函数表达式6、某公交车每月的支出费用为4000元,每月的乘车人数(人)与每月利润(利润=收入费用-支出费用)(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的);(1)在这个变化过程中,是自变量,是因变量;(填中文)(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.-参考答案-一、单选题1、C【详解】解:变量有:②行驶时间、③行驶路程、④汽车油箱中的剩余油量.共3个.故选C.【点睛】本题考查变量的概念,变量是指变化的量.2、C【分析】根据自变量和因变量的概念判断A,根据表格中声音的传播速度与温度的变化情况判断B,根据路程=速度×时间计算C,根据速度的变化情况判断D.【详解】解:A选项,自变量是温度,因变量是传播速度,故该选项正确,不符合题意;B选项,温度越高,传播速度越快,故该选项正确,不符合题意;C选项,当温度为10℃时,声音的传播速度为337m/s,所以5秒可以传播337×5=1685m,故该选项错误,符合题意;D选项,温度每升高10℃,传播速度增加6m/s,故该选项正确,不符合题意;故选C.【点睛】此题主要考查了常量与变量和通过表格获取信息,关键是掌握在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.3、A【分析】根据二次根式有意义的条件:被开方数大于或等于0,即可求解.【详解】解:由二次根式有意义的条件可得:,解得:,故选A.【点睛】本题主要考查函数自变量取值范围和二次根式有意义的条件,解决本题的关键是要熟练掌握二次根式有意义的条件.4、D【分析】根据自变量、因变量和常量的定义逐项判断即得答案.【详解】解:A、x是自变量,0.6元/千瓦时是常量,故本选项说法错误,不符合题意;B、y是因变量,x是自变量,故本选项说法错误,不符合题意;C、0.6元/千瓦时是常量,y是因变量,故本选项说法错误,不符合题意;D、x是自变量,y是因变量,0.6元/千瓦时是常量,故本选项说法正确,符合题意.故选:D.【点睛】本题考查了自变量、因变量和常量的定义,属于基础知识题型,熟知概念是关键.5、A【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,进而得出答案.【详解】解:在圆周长计算公式C=2πr中,对半径不同的圆,变量有:C,r.故选:A.【点睛】此题主要考查了常量与变量,正确把握变量的定义是解题关键.6、C【分析】根据表格数据,设弹簧长度y与所挂物体重量x的关系式为,进而求得关系式,令即可求得弹簧不挂物体时的长度.【详解】设弹簧长度y与所挂物体重量x的关系式为,将,分别代入得,解得即,将,分别代入,符合关系式,当时,则,故选C.【点睛】本题考查了变量与表格,函数关系式,找到关系式是解题的关键.7、D【分析】在圆的面积计算公式中,π是圆周率,是常数,变量为S,R.【详解】在圆的面积计算公式中,π是圆周率,是常数,变量为S,R.故选D.【点睛】本题主要考查常量与变量,解题关键是熟练掌握圆的面积S随半径的变化而变化.8、C【分析】根据变量的定义即可求解【详解】解:在s=30t中,数30是常量,s和t是变量,故选:C.【点睛】本题考查变量与常量的定义,熟练掌握定义即可求解.9、B【分析】根据表格中的数据,把对应的数据代入函数关系式中进行求解即可得到答案.【详解】解:A、当时,,不满足,故此选项不符合题意;B、当时,,满足,当时,,满足,当时,,满足,当时,,满足,故此选项符合题意;C、当时,,不满足,故此选项符合题意;D、当时,,不满足,故此选项符合题意;故选B.【点睛】本题主要考查了用表格表示变量间的关系,解题的关键在于能够熟练掌握用表格表示变量间的关系.10、C【详解】表示函数的方法有三种:解析法、列表法和图象法.解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.二、填空题1、横纵由这些点组成【分析】利用对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象,进而得出即可.【详解】解:把一个函数的自变量与对应的函数的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,由这些点组成的图形叫做这个函数的图象.故答案为:横,纵,由这些点组成.【点睛】此题主要考查了函数图形的定义,熟练根据函数定义得出是解题关键.2、【分析】观察表格中的数据可得:各个式子的分子是输入的数字,分母是输入数字的3倍减1,据此解答即可.【详解】解:因为各个式子的分子是输入的数字,分母是输入数字的3倍减1,所以当输入数据是正整数n时,输出的数据是:.故答案为:.【点睛】本题考查了利用表格表示变量之间的关系和数据规律的探求,分别找出式子的分子与分母的规律是解本题的关键.3、【分析】根据题目所给的数据和利息公式,即可得答案.【详解】解:某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为:y=0.2x+100,故答案为:y=100+0.2x.【点睛】本题主要考查了函数关系式,利用利息公式和题目数据列出关系式是解题关键.4、y=4x+20【分析】根据梯形的面积公式求出y与x之间的关系式即可.【详解】解:根据梯形的面积公式得:,故答案为:.【点睛】本题主要考查了梯形的面积公式,求两个变量之间的函数关系式,解题的关键在于能够熟练掌握梯形的面积公式.5、y=1.8x+2.6(x≥3)【分析】根据3千米以内收费8元,超过3千米,每增加1千米收费1.8元列代数式即可解答.【详解】解:由题意得,所付车费y=1.8(x-3)+8=1.8x+2.6(x≥3).故答案为:y=1.8x+2.6(x≥3).【点睛】本题考查了通过列代数式确定函数解析式,读懂题意、列出代数式是解答本题的关键.6、38.15℃.【分析】由于图象是表示的是时间与体温的关系,而在10-14时图象是一条线段,根据已知条件可以求出这条线段的函数解析式,然后利用解析式即可求出这位病人中午12时的体温.【详解】∵图象在10-14时图象是一条线段,∴设这条线段的函数解析式为y=kx+b,而线段经过(10,38.3)、(14,38.0),∴,∴k=-,b=39.05,∴y=-x+39.05,当x=12时,y=38.15,∴这位病人中午12时的体温约为38.15℃.【点睛】本题应首先看清横轴和纵轴表示的量,然后根据所给时间找对应的体温值.7、y=-x+25【解析】【分析】根据矩形的对边相等,周长表示为2x+2y,由已知条件建立等量关系,再变形即可.【详解】解:∵矩形的周长为50,∴2x+2y=50,整理得:y=-x+25.【点睛】本题关键是根据长、宽与周长的关系,列出等式.8、10l2203m/s【分析】因为小明让小强先跑,可知l1表示小强的路程与时间的关系,l2表示小明的路程与时间的关系,再通过图象中的信息回答题目的几个问题,即可解决问题.【详解】解:由图象中的信息可知,小明让小强先跑10米,因此l2表示小明的路程与时间的关系,大约20秒时,小明追上了小强,小强在这次赛跑中的速度是(70-10)÷20=3m/s;故答案依次填:10,l2,20,3m/s.【点睛】本题考查了学生观察图象的能力,需要先根据题意进行判断,再结合图象进行计算,能读懂图像中的信息是做题的关键.9、w=42−5t,42,5,w,t.【分析】利用拖拉机耗油量进而得出所剩油量与时间t的函数关系式即可.【详解】由题意可得出:w=42−5t,其中42,5是常量,w,t是变量.故答案为:w=42−5t,42,5,w,t.【点睛】此题考查常量与变量,函数关系式,解题关键在于掌握其性质定义.10、2【分析】根据图象可知货车往返A、B一趟需8小时,则快递车往返A、B一趟需5小时,依此画出图象,再观察其图象与货车图象相交的次数即可.【详解】解:根据题意可知货车往返A、B一趟需8小时,则快递车往返A、B一趟需5小时,在图上作出快递车距离A地的路程y(单位:km)与所用时间x(单位:h)的图象,由图象可知:两车在往返途中相遇的次数为2次.故答案为:2.【点睛】本题考查了利用图象表示变量之间的关系,正确理解题意、画出快递车的函数图象是解题关键.三、解答题1、【分析】首先解直角三角形求得腰长,然后根据等腰梯形的周长即可求得y与x之间的函数关系式.【详解】解:如图∵底角为30°,高AH=x,∴在RT△ABH中,AB=2x,∵梯形为等腰梯形,梯形的周长为28,上下底的和为y,∴(28-y)=2x,∴y=-4x+28.【点睛】此题考查了等腰梯形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.2、(1)反映了收入y与人次x两个变量之间的关系,其中x是自变量,y是因变量;(2)表格见解析;(3)7000人次.【分析】(1)根据表格即可得出结论;(2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元,即可得出结论;(3)先求出每增加1人次乘坐,每月的收入就增加2元,然后求出总收入即可求出结论;【详解】解:(1)反映了收入y与人次x两个变量之间的关系,其中x是自变量,y是因变量.(2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元,表格补充如下:(3)(元)(人次)答:每月乘坐该路公交车要达到7000人次【点睛】此题考查的是变量与常量的应用,掌握实际问题中的等量关系是解决此题的关键.3、(1)玲玲到离家最远的地方需要12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲在返回的途中最快,速度为:15千米/时;(4)10千米/时.【分析】(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)休息是路程不再随时间的增加而增加;(3)往返全程中回来时候速度最快,用距离除以所用时间即可;(4)用玲玲全称所行的路程除以所用的时间即可.【详解】观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)在返回的途中,速度最快,速度为:30÷(15﹣13)=15千米/时;(4)玲玲全程骑车的平均速度为:(30+30)÷(15﹣9)=10千米/时.【点睛】本题是一道函数图象的基础题,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,因此本题实际上是考查同学们的识图能力.4、(1)每月的乘车人数x,每月的利润y;(2)2;(3)y=2x-4000;(4)若5月份想获得利润5000元,乘客量需要达到4500人.【分析】(1)直接利用自变量与因变量的定义即可得出答案;(2)用4000除以当y=0时对应的x的值即得答案;(3)根据利润y=收入费用(每人的公交票价×乘车人数)﹣支出费用(4000)解答即可;(4)把y=5000代入(3)中的关系式,求出x的值即得结果.【详解】解:(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为:每月的乘车人数x,每月的利润y;(2)观察表中数据可知,当y=0时对应的x=2000,4000÷2000=2元,故答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《航空电气设备维修》试卷及答案 - 共3套
- 初级社工招聘考试题及答案
- 保管员证书考试题及答案
- 民族风黑白画课件
- 民族舞基本功训练课件
- 新质生产力现实事例解析
- 新质生产力与课程思政融合
- 2025年口腔医学病例分析训练考试答案及解析
- 2025年眼科青光眼患者的眼压测量技能考察答案及解析
- 2025年眼科学论文写作能力测验试卷答案及解析
- 沟通与协调能力考核题库600题(答案)
- 食堂档口合同协议
- 工程缺陷责任期终止证书版本
- 质量经理转正述职报告
- ktv店长合同范本
- 投资合作合同协议书
- 幼儿园家访培训课件
- 离职与人事交接
- 2025-2030年中国环氧丙烷行业发展趋势展望与投资策略分析报告
- 办公楼安防系统方案
- 健康与社会照护第三届全省职业技能大赛健康与社会照护项目技术文件
评论
0/150
提交评论