




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、如图,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为xm,则可以列出关于x的方程是()A.x(26﹣2x)=80 B.x(24﹣2x)=80C.(x﹣1)(26﹣2x)=80 D.(x-1)(25﹣2x)=802、设方程的两根分别是,则的值为(
)A.3 B. C. D.3、如下图所示的几何体从上面看到的图形()A. B. C. D.4、如图,平行四边形ABCD的对角线AC,BD相交于点O,添加下列条件仍不能判断四边形ABCD是矩形的是(
)A.AB+BC=AC B.AB=AD C.OA=OD D.∠ABC+∠ADC=180°5、已知x1,x2是一元二次方程2x2-3x=5的两个实数根,下列结论错误的是()A.2-3x1=5 B.(x1-x2)(2x1+2x2-3)=0C.x1+x2= D.x1x2=6、若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是(
)A.6 B.12 C.12或 D.6或二、多选题(6小题,每小题2分,共计12分)1、下列命题正确的是(
)A.菱形既是中心对称图形又是轴对称图形B.的算术平方根是5C.如果一个多边形的各个内角都等于108°,则这个多边形是正五边形D.如果方程有实数根,则实数2、如图,在正方形中,,点在边上,且.将沿对折至,点落在正方形内部点处,延长交边于点,连接,.下列结论正确的是(
)A. B.C. D.3、下列方程中,是一元二次方程的是()A. B. C. D.4、如图,已知等边三角形ABC的边长为2,DE是它的中位线.则下面四个结论中正确的有()A.DE=1 B.AB边上的高为C.△CDE∽△CAB D.△CDE的面积与△CAB面积之比为1:45、下列命题中的真命题是(
)A.矩形的对角线相等 B.对角线相等的四边形是矩形C.菱形的对角线互相垂直平分 D.对角线互相垂直的四边形是菱形6、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是(
)A.23 B.32 C. D.第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是_____.2、设分别为一元二次方程的两个实数根,则____.3、如图,在矩形纸片ABCD中,AB=12,AD=5,P为DC边上的动点(点P不与点D,C重合),将纸片沿AP折叠(1)当四边形ADPD′是正方形时,CD′的长为___.(2)当CD′的长最小时,PC的长为___.4、如果一个直角三角形斜边上的中线与斜边所成的锐角为角,那么这个直角三角形的较小的内角是________.5、如图,已知DC为∠ACB的平分线,DE∥BC.若AD=8,BD=10,BC=15,求EC的长=_____.6、如图,已知在平面直角坐标系中,直线分别交轴,轴于点和点,分别交反比例函数,的图象于点和点,过点作轴于点,连结.若的面积与的面积相等,则的值是_____.7、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,则GD=_______cm.8、“降次”是解一元二次方程的基本思想,用这种思想解高次方程x3-x=0,它的解是_____________.四、解答题(6小题,每小题10分,共计60分)1、如图,A,B两点被池塘隔开,在AB外取一点C,连接AC,BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于点N,量得MN=38m,求AB的长.2、已知:.(1)求代数式的值;(2)如果,求的值.3、用适当的方法解方程:(1)(1-x)2-2(x-1)-35=0;(2)x2+4x-2=0.4、用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).5、如图,在矩形中,对角线与相交于点E,过点A作,过点B作,两线相交于点F.(1)求证:四边形是菱形;(2)连接,若,求证:.6、已知反比例函数y=(m为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,3),(﹣2,0),求出该反比例函数的解析式;(3)若E(x1,y1),F(x2,y2)都在该反比例函数的图象上,且x1>x2>0,则y1和y2有怎样的大小关系?-参考答案-一、单选题1、A【解析】【分析】设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m,然后根据花圃面积为80m2列关于x的一元一次方程即可.【详解】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m由题意得:x(26-2x)=80.故答案为A.【考点】本题考查了根据题意列一元二次方程,理解题意、设出未知数、表示出相关的量、找到等量关系列方程是解答本题的关键.2、A【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可.【详解】由可知,其二次项系数,一次项系数,由韦达定理:,故选:A.【考点】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率.3、D【解析】【分析】该几何体是下面一个长方体,上面是一个小的长方体,因此从上面看到的图形是两个长方形叠在一起.【详解】解:从上面看到的图形:故答案为:D.【考点】此题考查了从不同方向观察物体和几何体,考查学生的空间想象能力和抽象思维能力.4、B【解析】【分析】由勾股定理的逆定理证得∠ABC=90°,根据有一个角是直角的平行四边形是矩形可判断A;根据有一组邻边相等的平行四边形是菱形可判断B;根据对角线相等的平行四边形是矩形可判断C;根据有一个角是直角的平行四边形是矩形可判断D.【详解】解:A.∵AB2+BC2=AC2,∴∠ABC=90°,∴▱ABCD为矩形,故本选项不符合题意;B.∵AB=AD,∴▱ABCD为菱形,故本选项符合题意;C.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴▱ABCD是矩形,故本选项不符合题意;D.∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴▱ABCD为矩形,故本选项不符合题意;故选:B.【考点】本题考查了矩形的判定定理,勾股定理的逆定理,平行四边形的性质,熟练掌握矩形的判定方法是解决问题的关键.5、D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】解:∵x1、x2是一元二次方程2x2-3x=5的两个实数根,∴,故A正确,不符合题意;这里a=2,b=-3,c=-5,∴,,∵,∴,∴,故B、C正确,不符合题意,D错误,符合题意.故选:D.【考点】本题考查了一元二次方程根的意义,根与系数的关系等,熟练掌握根与系数的关系,,是解题的关键.6、D【解析】【分析】根据题意,先将方程的两根求出,然后对两根分别作为直角三角形的直角边和斜边进行分情况讨论,最终求得该直角三角形的面积即可.【详解】解方程得,当3和4分别为直角三角形的直角边时,面积为;当4为斜边,3为直角边时根据勾股定理得另一直角边为,面积为;则该直角三角形的面积是6或,故选:D.【考点】本题主要考查了解一元二次方程及直角三角形直角边斜边的确定、直角三角形的面积求解,熟练掌握解一元二次方程及勾股定理是解决本题的关键.二、多选题1、AD【解析】【分析】利用菱形的对称性、算术平方根的定义、多边形的内角和、一元二次方程根的判别式等知识分别判断后即可确定正确的选项.【详解】解:A、菱形既是中心对称图形又是轴对称图形,故命题正确,符合题意;B、的算术平方根是,故命题错误,不符合题意;C、若一个多边形的各内角都等于108°,各边也相等,则它是正五边形,故命题错误,不符合题意;D、对于方程,当a=0时,方程,变为2x+1=0,有实数根,当a≠0时,时,即,方程有实数根,综上所述,方程有实数根,则实数,故命题正确,符合题意.故选:AD.【考点】考查了命题与定理的知识,解题的关键是了解算术平方根的定义、菱形的对称性、多边形的内角和、一元二次方程根的判别式等知识,难度不大.2、ABC【解析】【分析】根据正方形的性质得出AB=AD=DC=6,∠B=D=90°,求出DE=2,AF=AB,根据HL推出Rt△ABG≌Rt△AFG,推出BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得出(6﹣x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,求出∠AGB=∠FCG,再根据等角的余角相等即可证得∠BAG=∠FCE,根据GF=3,EF=2可得GF=GE,进而S△FGC=S△GCE=,由此即可求得答案.【详解】解:∵四边形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°.∵CD=3DE,∴DE=2,CE=4.∵△ADE沿AE折叠得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB.∵在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故A选项正确;∴BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2.在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.∵CG=6﹣x,CE=4,EG=x+2,∴(6﹣x)2+42=(x+2)2,解得:x=3,∴BG=GF=CG=3,故B选项正确;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∵∠B=∠BCD=90°,∴∠BAG+∠AGB=∠FCE+∠FCG=90°,∴∠BAG=∠FCE,故C选项正确;∵GF=3,EF=2,∴GF=GE,∴S△FGC=S△GCE=×CG·CE=××3×4=,故D选项错误,故选:ABC.【考点】本题考查了翻折变换,正方形性质,全等三角形的性质和判定,等腰三角形的性质和判定,勾股定理等知识点的运用,依据翻折的性质找出其中对应相等的线段和对应相等的角是解题的关键.3、BCD【解析】【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A
,分母中含有未知数,是分式方程;
B
x2=x+1,是一元二次方程;C
7x2+3=0,是一元二次方程;
D
是一元二次方程.故选:BCD.【考点】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.4、ABCD【解析】【分析】根据图形,利用三角形中位线定理,可得DE=1,A成立;AB边上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位线,可得DE∥AB,利用平行线分线段成比例定理的推论,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它们的面积比等于相似比的平方,就等于1:4,D也成立.【详解】解:∵DE是它的中位线,∴DE=AB=1,故A正确,∴DE∥AB,∴△CDE∽△CAB,故C正确,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正确,∵等边三角形的高=,故B正确.故选ABCD.【考点】本题利用了:1、三角形中位线的性质;2、相似三角形的判定:一条直线与三角形一边平行,则它所截得三角形与原三角形相似;3、相似三角形的面积等于对应边的比的平方;4、等边三角形的高=边长×sin60°.5、AC【解析】【分析】根据菱形的判定与性质,矩形的判定和性质即可进行判断.【详解】解:A、矩形的对角线相等,是真命题,符合题意;B、对角线相等的平行四边形是矩形,是假命题,不符合题意;C、菱形的对角线互相垂直平分,是真命题,符合题意;D、对角线互相垂直平分的四边形是菱形,是假命题,不符合题意;故选AC.【考点】本题考查了,矩形的判定,菱形的判定与性质,解题的关键是掌握所学的定理.6、AB【解析】【分析】设原来的两位数十位上的数字为,则个位上的数字为,根据所得到的新两位数与原来的两位数的乘积为736,可列出方程求解即可.【详解】解:设原来的两位数十位上的数字为,则个位上的数字为,依题意可得:,解得:,,当时,,符合题意,原来的两位数是23,当时,,符合题意,原来的两位数是32,∴原来的两位数是23或32,故选AB.【考点】本题考查了一元二次方程的应用,解题的关键是能正确用每一数位上的数字表示这个两位数.三、填空题1、5【解析】【分析】根据相似三角形的性质确定两直角边的比值为1:2,以及6×6网格图形中,最长线段为6,进行尝试,可确定、、为边的这样一组三角形满足条件.【详解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF的面积为:×2÷2=10,△DEF为面积最大的三角形,其斜边长为:5.故答案为:5.【考点】本题考查了作图-应用与设计、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.2、2020【解析】【分析】根据一元二次方程的解结合根与系数的关系即可得出m2+2m=2022,m+n=−2,将其代入m2+3m+n=m2+2m+(m+n)中即可求出结论.【详解】解:∵m,n分别为一元二次方程x2+2x−2022=0的两个实数根,∴m2+2m=2022,m+n=−2,∴m2+3m+n=m2+2m+(m+n)=2022+(−2)=2020.故答案为:2020.【考点】本题考查了根与系数的关系以及一元二次方程的解,根据一元二次方程的解结合根与系数的关系得出m2+2m=2022,m+n=−2是解题的关键.3、
【解析】【分析】(1)根据四边形是正方形,得到从而得到再利用勾股定理求解即可得到答案;(2)如图:连接,运用矩形的性质和折叠的性质求出的最小值,再设,则,最后在中运用勾股定理解答即可【详解】解:(1)如图所示,∵四边形是正方形∴∵∴∵四边形ABCD是矩形∴,∠B=90°∴(2)如图:连接,当点在上时,有最小值.∵四边形是矩形,,,∴,,∴.由折叠性质,得,,∴的最小值.设,则.在中,,即,解得,∴的长为.故答案为:.【考点】本题主要考查矩形的性质和折叠的性质,正方形的性质,勾股定理,根据矩形的性质和折叠的性质确定的最小值成为解答本题的关键.4、25【解析】【分析】由直角三角形斜边上的中线等于斜边的一半的性质,证明得到,再利用外角性质求出,再得到,从而得解.【详解】如图所示,∵是斜边上的中线,∴,∴,∵斜边上的中线与斜边所成的锐角为,即,∴,解得:,另一个锐角,∴这个直角三角形的较小内角是.故答案为:.【考点】本题考查了直角三角形的性质和外角的性质,比较基础.5、【解析】【分析】先由角平分线的定义及平行线的性质求得∠EDC=∠ECD,从而EC=DE;再DE∥BC,证得△ADE∽△ABC,然后根据相似三角形的性质列出比例式,求得DE的长,即为EC的长.【详解】解:∵DC为∠ACB的平分线∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案为:【考点】本题考查了角平分线的定义、平行线的性质、等腰三角形的判定及相似三角形的判定与性质,熟练掌握相关性质与定理是解题的关键.6、2.【解析】【分析】过点作轴于.根据k的几何意义,结合三角形面积之间的关系,求出交点D的坐标,代入即可求得k的值.【详解】如图,过点作轴于.把y=0代入得:x=2,故OA=2由反比例函数比例系数的几何意义,可得,.∵,
∴,∴.易证,从而,即的横坐标为,而在直线上,∴∴.故答案为2【考点】本题是一次函数与反比例函数的交点问题,主要考查了一次函数和反比例函数的图象与性质,反比例函数“k“的几何意义,一次函数图象与反比例函数图象的交点问题,关键是根据两个三角形的面积相等列出k的方程.7、4.5【解析】【分析】由三角形的重心的性质即可得出答案.【详解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中线,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案为:4.5.【考点】本题考查了三角形的重心,三角形三条中线的交点叫做三角形的重心,三角形的重心到一个顶点的距离等于它到对边中点距离的两倍.8、【解析】【分析】先把方程的左边分解因式,再化为三个一次方程进行降次,再解一次方程即可.【详解】解:则或或解得:故答案为:【考点】本题考查的是利用因式分解的方法把高次方程转化为一次方程,掌握“因式分解的方法与应用”是解本题的关键.四、解答题1、.【解析】【分析】先根据可判断出,再根据相似三角形的对应边成比例列出方程解答即可.【详解】解:,,,,,即,.的长为.【考点】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.2、(1)1;(2)【解析】【分析】(1)设a=2k,b=3k,c=5k,代入代数式,即可求出答案;(2)把a、b、c的值代入,求出即可.【详解】∵∴设a=2k,b=3k,c=5k,(1);(2)∵∴6k-3k+5k=24,∴k=3,∴a=2×3=6,b=3×3=9,c=5×3=15.【考点】本题考查了比例的性质的应用,主要考查学生的计算能力.3、(1)x1=8,x2=-4(2)x1=-2,x2=--2【解析】【分析】(1)用分解因式的方法解答,分解因式用十字相乘法分解;(2)用配方法解答,配方前先把-2移项,而后配方,等号左右斗殴配上一次项系数一半的平方.(1)原方程可变形为(x-1-7)(x-1+5)=0,x-8=0或x+4=0,∴x1=8,x2=-4;(2)移项,得x2+4x=2,配方,得x2+4x+4=6,即(x+2)2=6,两边开平方,得x+2=±,∴x1=-2,x2=--2.【考点】本题考查了用适当方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 意识形态教育效果评估-洞察及研究
- 2025混凝土搅拌站购销合同
- 2025装载机租赁合同
- 2025合同管理类合同文本适用与填写培训
- 超聚变招聘笔试题库2025
- 2025年标准期限劳动合同范本(合同样式)
- 2025年度资金借款合同协议书
- 2025年北京市买卖合同范本
- 2025仓储租赁合同范本协议书
- 2025物业管理公司物业服务合同协议
- 2024-2025学年陕西省西安市高新一中高一(上)第一次月考数学试卷(含答案)
- (完整版)新概念英语第一册单词表(打印版)
- 新能源发电技术 课件 第一章-新能源发电概述
- 《智能网联汽车运行与维护》中职技工全套教学课件
- 《遥感原理与应用》全册配套完整课件
- 麻醉科医师晋升副主任医师病例分析专题报告三篇
- 智能云服务交付工程师认证考试题库(网大版)-中(多选题)
- 中医医疗技术手册2013普及版
- 古仁人之心作文共九篇
- 供应室医疗废物的分类和处理
- 农机防灾减灾培训课件
评论
0/150
提交评论