基础强化人教版8年级数学上册《全等三角形》章节测试试题(解析版)_第1页
基础强化人教版8年级数学上册《全等三角形》章节测试试题(解析版)_第2页
基础强化人教版8年级数学上册《全等三角形》章节测试试题(解析版)_第3页
基础强化人教版8年级数学上册《全等三角形》章节测试试题(解析版)_第4页
基础强化人教版8年级数学上册《全等三角形》章节测试试题(解析版)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《全等三角形》章节测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在中,是边上的高,平分,交于点,若,,则的面积等于()A.36 B.48 C.60 D.722、如图,已知,,,则的长为(

)A.7 B.3.5 C.3 D.23、如图,在中,,观察图中尺规作图的痕迹,可知的度数为()A. B. C. D.4、如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是()A.SAS B.ASA C.AAS D.HL5、如图,已知,,,是上的两个点,,,若,,,则的长为(

)A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.2、如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是__________秒.3、如图,已知△ABC与△DEF全等,且∠A=72°、∠B=45°、∠E=63°、BC=10,EF=10,那么∠D=_____度.4、如图,AD,BE是的两条高线,只需添加一个条件即可证明(不添加其它字母及辅助线),这个条件可以是______(写出一个即可).5、如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠ABE=_____°.三、解答题(5小题,每小题10分,共计50分)1、在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离.请你用学过的数学知识按以下要求设计一测量方案.(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算AB的距离(写出求解或推理过程,结果用字母表示).2、如图,A,B,C,D依次在同一条直线上,,BF与EC相交于点M.求证:.3、如图,在△ABC中,∠ABC=90°,AB=CB,点E在边BC上,点F在边AB的延长线上,BE=BF.

(1)求证:△ABE≌△CBF;

(2)若∠CAE=30°,求∠ACF的度数.4、如图,在△ABC中,BC=AB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAB=30°,求∠ACF的度数.5、如图,在中,,点在的延长线上,于点,若,求证:.-参考答案-一、单选题1、B【解析】【分析】作交于点,然后根据角平分线的性质,可以得到,再根据三角形的面积公式,即可求得的面积.【详解】解:作交于点,∵是边上的高,∴,∵平分,∴∵,,∴.故选:B.【考点】本题考查了三角形的面积和角平分线性质.理解和掌握角的平分线的性质定理是解题的关键.2、C【解析】【分析】利用全等三角形的性质求解即可.【详解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故选C.【考点】本题主要考查了全等三角形的性质,熟知全等三角形对应边相等是解题的关键.3、C【解析】【分析】利用等腰三角形的性质和基本作图得到,则平分,利用和三角形内角和计算出,从而得到的度数.【详解】由作法得,∵,∴平分,,∵,∴.故选C.【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.4、D【解析】【详解】∵在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),故选D.5、B【解析】【分析】由题意可证可得可求EF的长.【详解】解:在和中,故选:B.【考点】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.二、填空题1、4.【解析】【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为4.【考点】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.2、4【解析】【分析】根据角的等量代换求出,便可证出,利用全等的性质得到,从而求出的长,再通过时间=路程÷速度列式计算即可.【详解】解:根据题意可得:,,,∵∴又∵∴∴在和中∴∴∴∴时间=故答案为4【考点】本题主要考查了全等三角形的判定与性质,利用角的等量代换找出三角形全等的条件是解题的关键.3、【解析】【分析】△ABC中,根据三角形内角和定理求得∠C=63°,那么∠C=∠E.根据相等的角是对应角,相等的边是对应边得出△ABC≌△DFE,然后根据全等三角形的对应角相等即可求得∠D.【详解】解:在△ABC中,∵∠A=72°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=63°,∵∠E=63°,∴∠C=∠E.∵△ABC与△DEF全等,BC=10,EF=10,∴△ABC≌△DFE,∴∠D=∠A=72°,故答案为72.【考点】本题考查了全等三角形的性质;注意:题目条件中△ABC与△DEF全等,但是没有明确对应顶点.得出△ABC≌△DFE是解题的关键.4、(答案不唯一)【解析】【分析】根据已知条件可知,故只要添加一条边相等即可证明.【详解】解:添加,AD,BE是的两条高线,,在与中,.故答案为:(答案不唯一).【考点】本题考查了三角形全等的判定,掌握三角形全等的判定是解题的关键.5、23.5或【解析】【分析】首先作EM⊥BD、EN⊥BF、EO⊥AC垂足分别为M、N、O,再利用角平分线的性质得出BE为∠ABC的角平分线,即可求解.【详解】解:作EM⊥BD、EN⊥BF、EO⊥AC垂足分别为M、N、O,如图所示,∵AE、CE是∠DAC和∠ACF的平分线,∴EM=EO,EO=EN,∴EM=EN,∴BE是∠ABC的角平分线,∴∠ABE=∠ABC=23.5°.故答案为:23.5.【考点】此题考查角平分线的性质:在角的内部,到角的两边距离相等的点在角的平分线上,反之也是成立的.解题关键是利用角平分线的判定定理.三、解答题1、(1)见解析;(2)见解析;(3)设DC=m,则AB=m.【解析】【分析】本题让我们了解测量两点之间的距离的一种方法,设计时,只要符合全等三角形全等的条件,方案具有可操作性,需要测量的线段在陆地一侧可实施,就可以达到目的.【详解】解:(1)见图:(2)在湖岸上选一点O,连接BO并延长到C使BO=OC,连接AO并延长到点D使OD=AO,连接CD,则AB=CD.测量DC的长度即为AB的长度;(3)设DC=m∵BO=CO,∠AOB=∠COD,AO=DO∴△AOB≌△COD(SAS)∴AB=CD=m.【考点】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.2、见解析【解析】【分析】由AB=CD,得AC=BD,再利用SAS证明△AEC≌△DFB,即可得结论.【详解】证明:,,.在和中,,.【考点】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.3、(1)见解析;(2)∠ACF的度数为60°【解析】【分析】(1)由∠ABC=90°可得∠CBF=90°,再由SAS就即可得出△ABE≌△CBF;(2)根据题意可得∠BAC=∠ACB=45°由∠CAE=30°可得∠BAE=15°,即∠BCF=15°,进而可以求出∠ACF的度数.【详解】(1)证明:∵∠ABC=90°,

∴∠ABC=∠CBF=90°.在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);(2)解:∵△ABE≌△CBF,

∴∠BAE=∠BCF,∵∠ABC=90°,AB=CB,∴∠BCA=∠BAC=45°,∵∠CAE=30°,∴∠BAE=15°,∴∠BCF=15°,∵∠ACF=∠BCF+∠ACB,∴∠ACF=15°+45°=60°.答:∠ACF的度数为60°.【考点】本题主要考查全等三角形的判定与性质,解此题的关键在于熟练掌握全等三角形的判定方法.4、(1)证明见解析(2)【解析】【分析】(1)由“HL”可证Rt△ABE≌Rt△CBF;(2)由AB=CB,∠ABC=90°,即可求得∠CAB与∠ACB的度数,即可得∠BAE的度数,又由Rt△ABE≌Rt△CBF,即可求得∠BCF的度数,则由∠ACF=∠BCF+∠ACB即可求得答案.(1)∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,∴Rt△ABE≌Rt△CBF(HL);(2)∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°。∵Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论