考点解析北师大版9年级数学上册期末试卷及答案详解参考_第1页
考点解析北师大版9年级数学上册期末试卷及答案详解参考_第2页
考点解析北师大版9年级数学上册期末试卷及答案详解参考_第3页
考点解析北师大版9年级数学上册期末试卷及答案详解参考_第4页
考点解析北师大版9年级数学上册期末试卷及答案详解参考_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版9年级数学上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC−CF=2HE.其中正确的结论有(

)A.1个 B.2个 C.3个 D.4个2、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.3、在如图所示的网格中,以点为位似中心,四边形的位似图形是(

)A.四边形 B.四边形C.四边形 D.四边形4、已知函数是反比例函数,图象在第一、三象限内,则的值是()A.3 B.-3 C. D.5、已知关于x的一元二次方程x2﹣3x+1=0有两个不相等的实数根x1,x2,则x12+x22的值是()A.﹣7 B.7 C.2 D.﹣26、如图,矩形ABCD中,AD=2,AB=,对角线AC上有一点G(异于A,C),连接DG,将△AGD绕点A逆时针旋转60°得到△AEF,则BF的长为(

)A. B.2 C. D.2二、多选题(6小题,每小题2分,共计12分)1、(多选)如图,正方形ABCD的对角线AC,BD相交于D于点O,点P为线段AC上一点,连接BP,过点P作交AD于点E,连接BE,若,,下列说法正确的有(

)A. B. C. D.2、等腰三角形三边长分别为a,b,3,且a,b是关于x的一元二次方程x2﹣8x﹣1+m=0的两根,则m的值为()A.15 B.16 C.17 D.183、下列命题正确的是(

)A.菱形既是中心对称图形又是轴对称图形B.的算术平方根是5C.如果一个多边形的各个内角都等于108°,则这个多边形是正五边形D.如果方程有实数根,则实数4、下列命题是真命题的是()A.过线段中点的直线是线段的垂直平分线B.对角线互相平分且相等的四边形是矩形C.三角形的中位线将三角形的面积分成1:2两部分D.对角线互相垂直的矩形是正方形5、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是(

)A.23 B.32 C. D.6、如图,的两条中线,交于点,则下列结论正确的是(

)A. B.C. D.第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、如图,在平行四边形中,点在边上,,连接交于点,则的面积与四边形的面积之比为___

2、如图,在平行四边形ABCD中,,,,分别以A,C为圆心,大于的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF,则四边形AECF的周长为______.3、如图,矩形ABCD中,AB=6,BC=8,对角线BD的垂直平分线EF交AD于点E、交BC于点F,则线段EF的长为__.4、如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,4)也在此函数的图象上,则a=_____.5、对于任意实数a、b,定义一种运算:,若,则x的值为________.6、对任意实数a,b,定义一种运算:,若,则x的值为_________.7、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_____.8、若,则________.四、解答题(6小题,每小题10分,共计60分)1、如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.2、如图,Rt△ABO的顶点A是反比例函数的图象与一次函数的图象在第二象限的交点,AB⊥x轴于点B,且.(1)求反比例函数和一次函数的解析式;(2)求一次函数与反比例函数图象的两个交点A,C的坐标.3、如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣1,2)、B(2,1)、C(4,5).(1)以原点O为位似中心,在x轴的上方画出△A1B1C1,使△A1B1C1与△ABC位似,且相似比为2;(2)△A1B1C1的面积是平方单位.(3)点P(a,b)为△ABC内一点,则在△A1B1C1内的对应点P’的坐标为.4、某商店如果将进价8元的商品按每件10元出售,那么每天可销售200件,现采用提高售价,减少进货量的方法增加利润,如果这种商品的售价每涨1元,那么每天的进货量就会减少20件,要想每天获得640元的利润,则每件商品的售价定为多少元最为合适?5、如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值小于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,在x轴上是否存在点P,使S△OCP=S四边形OABC?若存在,请求出P点的坐标;若不存在,请说明理由.6、如图,在平面直角坐标系中,的三个顶点坐标分别为,,.以原点O为位似中心,位似比为,在y轴的左侧,画出将放大后的,并写出点的坐标______.-参考答案-一、单选题1、D【解析】【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判断出④正确.【详解】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°-45°)=67.5°,∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正确;综上所述,结论正确的是①②③④共4个.故选:D.【考点】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.2、D【解析】【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D.【考点】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.3、A【解析】【分析】以O为位似中心,作四边形ABCD的位似图形,根据图像可判断出答案.【详解】解:如图所示,四边形的位似图形是四边形.故选:A【考点】此题考查了位似图形的作法,画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,确定位似图形.4、A【解析】【分析】根据反比例函数的定义建立关于m的一元二次方程,再根据反比例函数的性质解答.【详解】∵函数是反比例函数,∴m2-10=-1,解得,m2=9,∴m=±3,当m=3时,m-2>0,图象位于一、三象限;当m=-3时,m-2<0,图象位于二、四象限;故选A.【考点】本题考查了反比例函数的定义和性质,对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.5、B【解析】【分析】根据一元二次方程的根与系数的关系可得x1+x2=3,x1x2=1,再把代数式x12+x22化为,再整体代入求值即可.【详解】解:根据根与系数的关系得x1+x2=3,x1x2=1,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×1=7.故选:B.【考点】本题考查的是一元二次方程的根与系数的关系,熟练的利用根与系数的关系求解代数式的值是解本题的关键.6、A【解析】【分析】过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,△AGD绕点A逆时针旋转60°得到△AEF,得∠FAD=60°,AF=AD=2,又由四边形ABCD是矩形,∠BAD=90°,得到∠FAH=30°,在Rt△AFH中,FH=AF=1,由勾股定理得AH=,得到BH=AH+AB=2,再由勾股定理得BF=.【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A逆时针旋转60°得到△AEF∴∠FAD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠FAD+∠BAD=150°∴∠FAH=180°-∠BAF=30°在Rt△AFH中,FH=AF=1由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB=2由勾股定理得BF=故BF的长.故选:A【考点】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.二、多选题1、ABC【解析】【分析】由∠DBP+∠BPO=90°,∠APE+∠BPO=90°,可判断结论A正确;过P作PK⊥AD于K,PT⊥AB于T,证明△PKE≌△PTB(ASA),可判定结论B正确;延长KP交BC于M,可得△CPM是等腰直角三角形,CP=PM=CP=1,即可得AE=AD-DK-KE=4,判断结论C正确;在Rt△BPM中,BP=,可得S△PBE=BP•PE=13,可判断结论D错误.【详解】解:∵四边形ABCD是正方形,∴∠BOP=90°,∴∠DBP+∠BPO=90°,∵PE⊥PB,∴∠APE+∠BPO=90°,∴∠APE=∠DBP,故结论A正确;过P作PK⊥AD于K,PT⊥AB于T,如图:∵四边形ABCD是正方形,∴∠DAC=∠BAC,又PK⊥AD,PT⊥AB∴PK=PT,∵∠KPT=90°=∠EPB,∴∠KPE=∠BPT,∵∠PKE=90°=∠PTB,∴△PKE≌△PTB(ASA),∴PE=PB,故结论B正确;延长KP交BC于M,如图:∵四边形ABCD是正方形,∴AD∥BC,∠ACB=45°,∴PM⊥BC,∴△CPM是等腰直角三角形,∴CP=PM=CP=1,∴DK=CM=1,KE=PM=1,∴AE=AD-DK-KE=4,故结论C正确;∵BC=6,CM=1,∴BM=5,在Rt△BPM中,BP==,∴PE=BP=,∴S△PBE=BP•PE=13,故结论D错误,故选:ABC.【考点】本题考查正方形的性质及应用,涉及全等三角形的判定与性质,等腰直角三角形的性质及应用等知识,解题的关键是作辅助线,证明△PKE≌△PTB.2、BC【解析】【分析】分3为底边长或腰长两种情况考虑:当3为底时,由a=b及a+b=8即可求出a、b的值,利用三角形的三边关系确定此种情况存在,再利用根与系数的关系即可求得的值;当3为腰时,则a、b中有一个为3,a+b=8即可求出b,再利用根与系数的关系即可求得的值.【详解】解:当3为腰时,此时a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此时方程为x2﹣8x+15=0,解得x1=3,x2=5;当3为底时,此时a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此时方程为x2﹣8x+16=0,解得x1=x2=4;综上所述,m的值为16或17.故答案为:BC.【考点】本题考查了一元二次方程根与系数的关系,等腰三角形的定义,分3为底边长或腰长两种情况讨论是解题的关键.3、AD【解析】【分析】利用菱形的对称性、算术平方根的定义、多边形的内角和、一元二次方程根的判别式等知识分别判断后即可确定正确的选项.【详解】解:A、菱形既是中心对称图形又是轴对称图形,故命题正确,符合题意;B、的算术平方根是,故命题错误,不符合题意;C、若一个多边形的各内角都等于108°,各边也相等,则它是正五边形,故命题错误,不符合题意;D、对于方程,当a=0时,方程,变为2x+1=0,有实数根,当a≠0时,时,即,方程有实数根,综上所述,方程有实数根,则实数,故命题正确,符合题意.故选:AD.【考点】考查了命题与定理的知识,解题的关键是了解算术平方根的定义、菱形的对称性、多边形的内角和、一元二次方程根的判别式等知识,难度不大.4、BD【解析】【分析】根据线段垂直平分线的定义,矩形的判定方法,三角形中位线的性质,以及正方形的判定方法逐项分析即可【详解】解:A.过线段中点且与这条线段垂直的直线是线段的垂直平分线,故原说法错误;B.对角线互相平分且相等的四边形是矩形,正确;C.如图,DE是△ABC的中位线,作AM⊥BC于M,交DE于N,∵DE是△ABC的中位线,∴DE=BC,AN=AM,∵S△ADE==,S△ABC=,∴S△ADE=S△ABC,∴S△ADE=S四边形BCED,∴三角形的中位线将三角形的面积分成1:3两部分,故原说法错误;D.对角线互相垂直的矩形是正方形,正确;故选BD.【考点】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.5、AB【解析】【分析】设原来的两位数十位上的数字为,则个位上的数字为,根据所得到的新两位数与原来的两位数的乘积为736,可列出方程求解即可.【详解】解:设原来的两位数十位上的数字为,则个位上的数字为,依题意可得:,解得:,,当时,,符合题意,原来的两位数是23,当时,,符合题意,原来的两位数是32,∴原来的两位数是23或32,故选AB.【考点】本题考查了一元二次方程的应用,解题的关键是能正确用每一数位上的数字表示这个两位数.6、ACD【解析】【分析】根据三角形中位线定理得到DE=BC,DE∥BC,根据三角形面积公式及相似三角形的性质进行计算,判断即可.【详解】∵AD=DB,AE=EC,∴DE=BC,DEBC,∴,A选项结论正确;∵DEBC,∴△BDE与△DCE的DE边上的高相等∴S△BDE=S△DCE∴S△AEB=S△BDE+S△DAE=S△DAE+S△DCE=S△ACD,B选项结论错误;∵DEBC,∴,C选项结论正确;∵DEBC,∴△DOE∽△COB,∴S△DOE:S△COB=(1:2)2=1:4,D选项结论正确;故选:ACD.【考点】本题考查的是相似三角形的判定和性质、三角形中位线定理的应用,掌握相似三角形的判定定理和性质定理是解题的关键.三、填空题1、【解析】【分析】由DE:EC=3:1,可得DF:FB=3:4,根据在高相等的情况下三角形面积比等于底边的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面积与四边形BCEF的面积的比值.【详解】解:连接BE∵DE:EC=3:1∴设DE=3k,EC=k,则CD=4k∵ABCD是平行四边形∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4∵DE:EC=3:1∴S△BDE:S△BEC=3:1设S△BDE=3a,S△BEC=a则S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴则△DEF的面积与四边形BCEF的面积之比9:19故答案为:.【考点】本题考查了平行线分线段成比例,平行四边形的性质,关键是运用在高相等的情况下三角形面积比等于底边的比求三角形的面积比值.2、10【解析】【分析】根据作图可得,且平分,设与的交点为,证明四边形为菱形,根据平行线分线段成比例可得为的中线,然后勾股定理求得,根据直角三角形中斜边上的中线等于斜边的一半可得的长,进而根据菱形的性质即可求解.【详解】解:如图,设与的交点为,根据作图可得,且平分,,四边形是平行四边形,,,又,,,,,四边形是平行四边形,垂直平分,,四边形是菱形,,,,,为的中点,中,,,,,四边形AECF的周长为.故答案为:.【考点】本题考查了垂直平分线的性质,菱形的性质与判定,勾股定理,平行线分线段成比例,平行四边形的性质与判定,综合运用以上知识是解题的关键.3、【解析】【分析】根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出EF即可.【详解】解:如下图,∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴,∴,解得,OF,∵四边形ABCD是矩形,∴ADBC,∠A=90°,∴∠EDO=∠FBO,∵EF是BD的垂直平分线,∴BO=DO,EF⊥BD,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴EF=2OF,故答案为:.【考点】本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,解题的关键是掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义.4、3【解析】【分析】根据反比例函数的几何意义,可得,从而得到,再将点P(a,4)代入解析式,即可求解.【详解】解:∵点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,∴,∵△OAB的面积为6.∴,即,∴反比例函数的解析式为,∵点P(a,4)也在此函数的图象上,∴,解得:.故答案为:3【考点】本题主要考查了反比例函数的几何意义,反比例函数的图象和性质,熟练掌握反比例函数的几何意义,反比例函数的图象和性质,利用数形结合思想解答是解题的关键.5、或2【解析】【分析】根据新定义的运算得到,整理并求解一元二次方程即可.【详解】解:根据新定义内容可得:,整理可得,解得,,故答案为:或2.【考点】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键.6、2或-3##-3或2【解析】【分析】根据题意得到关于x的一元二次方程,解方程即可.【详解】解:∵,∴,∴,解得或,故答案为:2或-3.【考点】本题主要考查了新定义下的实数运算,解一元二次方程,正确理解题意是解题的关键.7、1【解析】【分析】利用因式分解法求出x1,x2,再根据根的关系即可求解.【详解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案为:1.【考点】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的运用.8、【解析】【分析】根据比例的基本性质进行化简,代入求职即可.【详解】由可得,,代入.故答案为.【考点】本题主要考查了比例的基本性质化简,准确观察分析是解题的关键.四、解答题1、旗杆的高度为11.5m【解析】【分析】根据相似三角形的性质列式计算即可;【详解】解:由题意可得:△DEF∽△DCA,则,∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,∴,解得:AC=10,故AB=AC+BC=10+1.5=11.5(m).答:旗杆的高度为11.5m.【考点】本题主要考查了相似三角形的性质应用,准确分析计算是解题的关键.2、(1),;(2)A(-1,6),C(6,-1).【解析】【分析】(1)先根据反比例函数的图象所在的象限判断出k的符号,在由△ABO的面积求出k的值,进而可得出两个函数的解析式;(2)把两函数的解析式组成方程组,求出x、y的值,即可得出A、C两点的坐标.【详解】(1)∵AB⊥x轴于点B,且,∴,∴.∵反比例函数图象在第二、四象限,∴,∴,∴反比例函数的解析式为,一次函数的解析式为;(2)由,解得,或,∴A(-1,6),C(6,-1).【考点】本题考查了反比例函数比例系数k的几何意义及应用,反比例函数与一次函数的交点问题,能根据△ABO的面积求出k的值是解答此题的关键.3、(1)见解析;(2)28;(3)(2a,2b).【解析】【分析】(1)连接OB,延长OB到B1使得OB1=2OB,同法作出A1,C1,连接A1C1,B1C1,A1B1即可.(2)两条分割法求出三角形的面积即可.(3)利用相似三角形的性质解决问题即可.【详解】解:(1)△A1B1C1即为所求.(2)△A1B1C1的面积=4S△ABC=4×(4×5﹣×3×5﹣×1×3﹣×2×4)=28,故答案为:28.(3)点P(a,b)为△ABC内一点,则在△A1B1C1内的对应点P’的坐标为(2a,2b),故答案为:(2a,2b).【考点】本题考查作图——位似变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、每件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论