




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建福州屏东中学7年级下册数学期末考试专项测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下列计算中,正确的是()A. B. C. D.2、用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.0.2 B.0.3 C.0.4 D.0.53、抛掷一枚质地均匀的散子(骰子六个面上分别标有1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的概率是()A. B. C. D.4、一个角的余角比这个角的补角的一半小40°,则这个角为()A.50° B.60° C.70° D.80°5、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是()A. B. C. D.6、一个角的补角比这个角的余角大().A.70° B.80° C.90° D.100°7、如图,点C在∠AOB的OB边上,用尺规作出了∠NCE=∠AOD,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧8、下列说法中正确的是()A.一组数据2、3、3、5、5、6,这组数据的众数是3B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1C.为了解长沙市区全年水质情况,适合采用全面调查D.画出一个三角形,其内角和是180°为必然事件9、下列运算正确的是().A.a2•a3=a6 B.a3÷a=a3 C.(a2)3=a5 D.(3a2)2=9a410、如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中至少有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,直线AB、CD相交于O,∠COE是直角,∠1=57°,则∠2=_____.2、在一只不透明的口袋中放入只有颜色不同的白球7个,黑球5个,黄球个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球总数__________.3、如图,ABC与关于直线l对称,则∠B的度数为__________.4、如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为_____小时.5、如图,,则的长为________.6、一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A.B.C.D.第一步列举出所有________的结果:正正、反反、正反、反正第二步根据概率公式计算:P(两枚硬币都正面朝上)=______7、如图,点C是线段AB的中点,.请你只添加一个条件,使得≌.(1)你添加的条件是______;(要求:不再添加辅助线,只需填一个答案即可)(2)依据所添条件,判定与全等的理由是______.8、同时抛掷两枚质地均匀的骰子(骰子的6个面上分别刻有1~6的数字),向上一面的点数之和为1是_______(填“随机事件”或“确定事件”).9、某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶,在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如表:t(小时)0123y(升)12011210496由表格中y与t的关系可知,当汽车行驶_____小时,油箱的余油量为0.10、下列图形中,一定是轴对称图形的有______________(填序号).(1)线段;(2)三角形;(3)圆;(4)正方形;(5)梯形三、解答题(6小题,每小题10分,共计60分)1、一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖荼杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起.求颜色搭配正确和颜色搭配错误的概率各是多少.2、阅读下列材料:利用完全平方公式,可以把多项式变形为的形式.例如,==.观察上式可以发现,当取任意一对互为相反数的值时,多项式的值是相等的.例如,当=±1,即=3或1时,的值均为0;当=±2,即=4或0时,的值均为3.我们给出如下定义:对于关于的多项式,若当取任意一对互为相反数的值时,该多项式的值相等,则称该多项式关于=对称,称=是它的对称轴.例如,关于=2对称,=2是它的对称轴.请根据上述材料解决下列问题:(1)将多项式变形为的形式,并求出它的对称轴;(2)若关于的多项式关于=-5对称,则=;(3)代数式的对称轴是=.3、星期天小明和同学们去郊外爬山,得到如下数据:爬坡长度x(m)4080120160200240爬坡时间t(min)259142030(1)当爬到120m时,所用时间是多少?(2)爬坡速度随时间是怎样变化的?4、已知水池中有800立方米的水,每小时抽出50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的关系式及t的取值范围;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?5、有一水箱,它的容积为500L,水箱内原有水200L,现往水箱中注水,已知每分钟注水10L.(1)写出水箱内水量(L)与注水时间(min)的函数关系.(2)求注水12min时水箱内的水量?(3)需多长时间把水箱注满?6、阅读材料:若满足,求的值.解:设,,则,,所以请仿照上例解决下面的问题:(1)问题发现:若x满足,求的值;(2)类比探究:若x满足.求的值;(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).-参考答案-一、单选题1、C【分析】根据同底数幂的乘法、合并同类项、积的乘方、幂的乘方运算法则以及完全平方公式对各项进行计算即可解答.【详解】解:A.,故原选项计算错误,不符合题意;B.与不能合并,故原选项计算错误,不符合题意;C.,计算正确,符合题意;D.,故原选项计算错误,不符合题意.故选:C.【点睛】本题主要考查了同底数幂的乘法、合并同类项、幂的乘方运算法则以及完全平方公式等知识点,灵活运用相关运算法则是解答本题的关键.2、B【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【详解】解:∵“陆地”部分对应的圆心角是108°,∴“陆地”部分占地球总面积的比例为:108÷360=,∴宇宙中一块陨石落在地球上,落在陆地的概率是=0.3,故选B.【点睛】此题主要考查了几何概率,以及扇形统计图.用到的知识点为:概率=相应的面积与总面积之比.3、B【分析】由题意根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是.故选:B.【点睛】本题考查概率的求法,注意掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4、D【分析】设这个角为x,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,表示出它的余角和补角,列式解方程即可.【详解】设这个角为x,则它的余角为(90°-x),补角为(180°-x),依题意得解得x=80°故选D.【点睛】本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解决本题的关键.5、C【分析】用3的倍数的个数除以数的总数即为所求的概率.【详解】解:∵1到10的数字中是3的倍数的有3,6,9共3个,∴卡片上的数字是3的倍数的概率是.故选:C.【点睛】本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.6、C【分析】根据互补即两角的和为180°,互余的两角和为90°,设这个角为x,即可求出答案.【详解】解:设这个角为x,则这个角的补角为180°-x,这个角的补角为90°-x,根据题意得:180°-x-(90°-x)=90°,故选:C.【点睛】本题主要考查了余角和补角的概念与性质.互为余角的两角的和为90°,互为补角的两角之和为180°.7、D【分析】根据作一个角等于已知角的步骤即可得.【详解】解:作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选:D.【点睛】本题主要考查作图-尺规作图,解题的关键是熟练掌握作一个角等于已知角的尺规作图步骤.8、D【分析】根据统计调查、事件的发生可能性与概率的求解方法即可依次判断.【详解】A.一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;C.为了解长沙市区全年水质情况,适合采用抽样调查,故错误;D.画出一个三角形,其内角和是180°为必然事件,正确;故选D.【点睛】此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解.9、D【分析】分别根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则以及积的乘方法则逐一判断即可.【详解】解:A、a2•a3=a5a6,故本选项不合题意;B、a3÷a=a2a3,故本选项不合题意;C、(a2)3=a6a5,故本选项不合题意;D、(3a2)2=9a4,故本选项符合题意;故选:D.【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,掌握运算法则正确计算是本题的解题关键.10、B【分析】按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F在线段CD上时点F到点B、C、D、E的距离之和最小,当点F和E重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.【详解】解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确;②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,∵BC=2,CD=DE=3,∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误.故选B.【点睛】本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题1、33°【分析】由题意直接根据∠2=180°﹣∠COE﹣∠1,进行计算即可得出答案.【详解】解:由题意得:∠2=180°﹣∠COE﹣∠1=180°﹣90°﹣57°=33°.故答案为:33°.【点睛】本题考查余角和补角的知识,属于基础题,注意数形结合思维分析的运用.2、6【分析】利用概率公式,将黄球个数除以所有球总个数即可得出随机从中摸取一个恰好是黄球的概率.【详解】解:由题可知:,解得:,经检验,符合题意;故答案为:6.【点睛】本题考查了随机事件的概率,解题的关键是牢记概率公式,正确列出方程并求解.3、100°【分析】根据轴对称的性质可得≌,再根据和的度数即可求出的度数.【详解】解:∵与关于直线l对称∴≌∴,∴故答案为:【点睛】本题主要考查了轴对称的性质以及全等的性质,熟练掌握轴对称的性质和全等的性质是解答此题的关键.4、【分析】根据图象可得沙漏漏沙的速度,从而得出从开始计时到沙子漏光所需的时间.【详解】沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=(小时).故答案为:.【点睛】本题考查了一次函数的运用,学会看函数图象,理解函数图象所反映的实际意义,从函数图象中获取信息,并且解决有关问题.5、3【分析】根据,可得到,再由,可得,从而得到,即可求解.【详解】解:∵,∴,∵,∴,即,∴,∴.故答案为:3【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.6、等可能【详解】略7、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)SAS【分析】(1)由已知条件可得两个三角形有一组对应边相等,一组对应角相等,根据三角形全等的判定方法添加条件即可;(2)根据添加的条件,写出判断的理由即可.【详解】解:(1)添加的条件是:AD=CE(或∠D=∠E或∠ACD=∠B)故答案为:AD=CE(或∠D=∠E或∠ACD=∠B)(2)若添加:AD=CE∵点C是线段AB的中点,∴AC=BC∵∴∴≌(SAS)故答案为:SAS【点睛】本题主要考查了添加条件判断三角形全等,熟练掌握全等三角形的判断方法是解答本题的关键.8、确定事件【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:两枚骰子向上的一面的点数之和等于1,是不可能事件,是确定事件.故答案为:确定事件.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、15【分析】由表格可知油箱中有油120升,每行驶1小时,耗油8升,则可求解.【详解】解:由表格可知,每行驶1小时,耗油8升,∵t=0时,y=120,∴油箱中有油120升,∴120÷8=15小时,∴当行驶15小时时,油箱的余油量为0,故答案为:15.【点睛】本题考查了变量与常量,注意贮满120L油的汽车,最多行驶的时间就是油箱中剩余油量为0的时的t的值.10、(1)(3)(4)【分析】如果一个图形沿着一条直线对折后,直线两旁的部分完全重合,这样的图形叫做轴对称图形,依据定义即可作出判断.【详解】解:线段的对称轴是其垂直平分线,圆的对称轴是其直径所在的直线,正方形的对称轴是其对角线所在直线和对边中点的连线,(1)(3)(4)是轴对称图形,只有等腰三角形和等腰梯形是轴对称图形,(2)(5)不一定是轴对称图形,故一定是轴对称图形的有(1)(3)(4).故答案为:(1)(3)(4).【点睛】本题主要考查了轴对称图形的定义,解题的关键是正确确定轴对称图形的对称轴.三、解答题1、P(颜色搭配正确)=,P(颜色搭配错误)=.【分析】根据概率的计算公式,颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.【详解】用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯,经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以,一共有4种可能,颜色搭配正确的有2种可能,概率是;颜色搭配错误的有2种可能,概率是.P(颜色搭配正确)=,P(颜色搭配错误)=.【点睛】此题主要考查概率的计算公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,熟练运用公式是解题关键.2、(1),对称轴为x=3;(2)5;(3)【分析】(1)加上,同时再减去,配方,整理,根据定义回答即可;(2)将配成,根据对称轴的定义,对称轴为x=-a,根据对称轴的一致性,求a即可;(3)将代数式配方成=,根据定义计算即可.【详解】(1)==.∴该多项式的对称轴为x=3;(2)∵=,∴对称轴为x=-a,∵多项式关于=-5对称,∴-a=-5,即a=5,故答案为:5;(3)∵===,∴对称轴为x=,故答案为:.【点睛】本题考查了配方法,熟练进行配方是解题的关键.3、(1)所用时间是9min;(2)爬坡速度随时间的增加而减小.【解析】【分析】(1)根据表中数据可以找到在爬坡长度为120m时,爬坡时间是9min;(2)根据速度=爬坡长度爬坡时间即可得出答案;【详解】(1)在表格的第一行中找到120m,对应的时间是9min,因此爬到120m时,所用时间是9min.(2)利用表格数据进行计算:前40m用了2min,平均每分钟爬20m;又爬了40m用了3min,平均每分钟约爬13米;…;爬最后40m用了10min,平均每分钟爬4m.由此可知:爬坡速度随时间的增加而减小.【点睛】此题主要考查了函数的表示方法,关键是认真观察表格,从表中得到正确信息.4、(1)Q=800-50t(0≤t≤16);(2)6小时后,池中还剩500立方米的水;(3)12小时后,池中还有200立方米的水.【分析】(1)根据函数的概念和所给的已知条件即可列出关系式,Q=800-50t;(2)根据(1)中的函数关系式,将t=6代入即可得出池中的水;(3)结合已知,可知Q=200,代入函数关系式中即可得出时间t.【详解】(1)由已知条件知,每小时抽50立方米水,则t小时后抽水50t立方米,而水池中总共有800立方米的水,那么经过t时后,剩余的水为800-50t,故剩余水的体积Q立方米与时间t(时)之间的函数关系式为:Q=800-50t(0≤t≤16);(2)当t=6时,Q=800-50×6=500(立方米),答:6小时后,池中还剩500立方米的水;(3)当Q=200时,800-50t=200,解得t=12,答:12小时后,池中还有200立方米的水.【点睛】本题考查了一次函数的应用,弄清题意,找准各量间的关系是解题的关键.5、(1)Q=10t+200;(2)320L;(3)30min.【分析】(1)根据等量关系“箱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农民工用工管理与技能培训方案
- 共享储能项目设备采购建设方案
- 光伏项目分阶段建设实施计划方案
- 挖机租赁合同附安全协议
- 快递柜提供服务合同范本
- 旋挖打桩机租赁合同协议
- 施工机械外包合同协议书
- 快递客户合同协议书范本
- 汽车废油箱出售合同范本
- 提早解除劳动合同协议书
- 赛事租赁用品租赁模式分析报告
- 学校防坠楼安全知识培训课件
- 护士长领导力提升与团队管理技巧
- 医院等级评审护理组工作汇报
- 产前筛查答案及试题(附答案)
- 2025年中国保密在线考试题库及答案
- 保密观试题含答案2025年
- 应急救援人员的心理培训
- DB11T 2441-2025 学校食堂清洁和消毒规范
- DB42T 1917.1-2022 中药材 水蛭(日本医蛭)养殖与加工技术规程 第1部分:种苗繁育
- 头疗课件培训
评论
0/150
提交评论