解析卷沪科版9年级下册期末测试卷含答案详解【考试直接用】_第1页
解析卷沪科版9年级下册期末测试卷含答案详解【考试直接用】_第2页
解析卷沪科版9年级下册期末测试卷含答案详解【考试直接用】_第3页
解析卷沪科版9年级下册期末测试卷含答案详解【考试直接用】_第4页
解析卷沪科版9年级下册期末测试卷含答案详解【考试直接用】_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版9年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为()A. B. C. D.2、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是()A. B.1 C.2 D.3、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是()A.30° B.36° C.60° D.72°4、在中,,,给出条件:①;②;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是()A.① B.② C.③ D.①或③5、图2是由图1经过某一种图形的运动得到的,这种图形的运动是()A.平移 B.翻折 C.旋转 D.以上三种都不对6、如图是由5个相同的小正方体搭成的几何体,它的左视图是().A. B. C. D.7、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积()A.不变 B.面积扩大为原来的3倍C.面积扩大为原来的9倍 D.面积缩小为原来的8、下列事件是确定事件的是()A.方程有实数根 B.买一张体育彩票中大奖C.抛掷一枚硬币正面朝上 D.上海明天下雨第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是___________.2、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.3、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC,若弦BC的长度为,则∠BAC=________度.4、某农科所为了深入践行“绿水青山就是金山银山”的理念,大力开展对植物生长的研究,该农科所在相同条件下做某植物种子发芽率的试验,得到的结果如下表所示:种子个数1002003004005006007008009001000…发芽种子个数94188281349435531625719812902…发芽种子频率(结果保留两位小数)0.940.940.940.870.870.890.890.900.900.90…根据频率的稳定性,估计这种植物种子不发芽的概率是______.5、从﹣2,1两个数中随机选取一个数记为m,再从﹣1,0,2三个数中随机选取一个数记为n,则m、n的取值使得一元二次方程x2﹣mx+n=0有两个不相等的实数根的概率是_____.6、已知如图,AB=8,AC=4,∠BAC=60°,BC所在圆的圆心是点O,∠BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为____________.7、斛是中国古代的一种量器.据《汉书.律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”.如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.三、解答题(7小题,每小题0分,共计0分)1、为了引导青少年学党史,某中学举行了“献礼建党百年”党史知识竞赛活动,将成绩划分为四个等级:A(优秀)、B(优良)、C(合格)、D(不合格).小李随机调查了部分同学的竞赛成绩,绘制成了如下统计图(部分信息未给出):(1)小李共抽取了名学生的成绩进行统计分析,扇形统计图中“优秀”等级对应的扇形圆心角度数为,请补全条形统计图;(2)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数;(3)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率.2、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)王老师被分配到“就餐监督岗”的概率为;(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.3、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)4、如图1,O为直线DE上一点,过点O在直线DE上方作射线OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕点O按每秒5°的速度逆时针旋转一周,设旋转时间为t秒.(1)如图2,当t=4时,∠AOC=,∠BOE=,∠BOE﹣∠AOC=;(2)当三角板旋转至边AB与射线OE相交时(如图3),试猜想∠AOC与∠BOE的数量关系,并说明理由;(3)在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出t的取值,若不存在,请说明理由.5、在平面直角坐标系中,⊙O的半径为1,对于直线l和线段AB,给出如下定义:若将线段AB关于直线l对称,可以得到⊙O的弦A´B´(A´,B´分别为A,B的对应点),则称线段AB是⊙O的关于直线l对称的“关联线段”.例如:在图1中,线段是⊙O的关于直线l对称的“关联线段”.(1)如图2,的横、纵坐标都是整数.①在线段中,⊙O的关于直线y=x+2对称的“关联线段”是_______;②若线段中,存在⊙O的关于直线y=-x+m对称的“关联线段”,则=;(2)已知直线交x轴于点C,在△ABC中,AC=3,AB=1,若线段AB是⊙O的关于直线对称的“关联线段”,直接写出b的最大值和最小值,以及相应的BC长.6、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.已知点N(3,0),A(1,0),,.(1)①在点A,B,C中,线段ON的“二分点”是______;②点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;(2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.7、如图,在中,,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F.(1)求的度数;(2)若,且,求DF的长.-参考答案-一、单选题1、C【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,∴随机抽取一个球是黄球的概率是.故选C.【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.2、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故选A.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.3、B【分析】求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵正五边形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故选:B.【点睛】本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.4、B【分析】画出图形,作,交BE于点D.根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断①②;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意.【详解】如图,,,点C在射线上.作,交BE于点D.∵,∴为等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合题意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如图,点C即是.∴,使得BC的长唯一成立,故②符合题意;∵,,∴存在两个点C使的外接圆的半径等于4,两个外接圆圆心分别在AB的上、下两侧,如图,点C和即为使的外接圆的半径等于4的点.故③不符合题意.故选B.【点睛】本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质.利用数形结合的思想是解答本题的关键.5、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C.【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.6、B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看,第一层有2个正方形,第二层左侧有1个正方形.故选:B.【点睛】本题考查了三视图的知识,熟知左视图是从物体的左面看得到的视图是解答本题的关键.7、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.【详解】设原来扇形的半径为r,圆心角为n,∴原来扇形的面积为,∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的,∴变化后的扇形的半径为3r,圆心角为,∴变化后的扇形的面积为,∴扇形的面积不变.故选:A.【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.8、A【分析】随机事件:是指在一定条件下可能发生也可能不发生的事件,根据随机事件的分类对各个选项逐个分析,即可得到答案【详解】解:.方程无实数根,因此“方程有实数”是不可能事件,所以选项符合题意;B.买一张体育彩票可能中大奖,有可能不中,因此是随机事件,所以选项B不符合题意;C.抛掷一枚硬币,可能正面朝上,有可能反面朝上,因此是随机事件,所以选项C不符合题意;D.上海明天可能下雨,有可能不下雨,因此是随机事件,所以选项D不符合题意;故选:.【点睛】本题考查的是确定事件与随机事件的概念,掌握确定事件分为必然事件,不可能事件,及随机事件的概念是解题的关键.二、填空题1、【分析】根据圆心角为的扇形面积是进行解答即可得.【详解】解:这个扇形的面积.故答案是:.【点睛】本题考查了扇形的面积,解题的关键是掌握扇形的面积公式.2、2【分析】根据扇形的面积公式S=,代入计算即可.【详解】解:∵“完美扇形”的周长等于6,∴半径r为=2,弧长l为2,这个扇形的面积为:==2.答案为:2.【点睛】本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可.3、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.【详解】解:如图作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案为:60.【点睛】本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.4、0.1【分析】大量重复试验下“发芽种子”的频率可以估计“发芽种子”的概率,据此求解.【详解】观察表格发现随着实验次数的增多频率逐渐稳定在0.9附近,故“发芽种子”的概率估计值为0.9.∴这种植物种子不发芽的概率是0.1.故答案为:0.1.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.5、【分析】先画树状图列出所有等可能结果,从中找到使方程有两个不相等的实数根,即m>n的结果数,再根据概率公式求解可得.【详解】解:画树状图如下:由树状图知,共有12种等可能结果,其中能使方程x2-mx+n=0有两个不相等的实数根,即m2-4n>0,m2>4n的结果有4种结果,∴关于x的一元二次方程x2-mx+n=0有两个不相等的实数根的概率是,故答案为:.【点睛】本题是概率与一元二次方程的根的判别式相结合的题目.正确理解列举法求概率的条件以及一元二次方程有根的条件是关键.6、12【分析】如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题.【详解】解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,∴当MN的值最小时,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴当PA的值最小时,MN的值最小,取AB的中点J,连接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等边三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵当点P在直线OA上时,PA的值最小,最小值为-,∴MN的最小值为•(-)=-12.故答案:-12.【点睛】本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题.7、【分析】如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.【详解】解:如图,∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∴CE是直径,∠ECD=45°,根据题意得:AB=2.5,,∴,∴,即此斛底面的正方形的边长为尺.故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.三、解答题1、(1)100,126°,条形统计图见解析;(2)700;(3)【分析】(1)根据C等级的人数和所占比可求出抽取的总人数,用A等级的人数除以抽取的总人数乘以360°可得A等级对应扇形圆心角的度数,用抽取的总人数乘以B等级所占的百分比得B等级的人数,用抽取的总人数减去A、B、C等级的人数得出D等级人数,即可补全条形统计图;(2)用2000乘以A等级所占的百分比即可估计出成绩“优秀”的学生人数;(3)由(1)得不合格有5人,故由3男2女,用列表法即可求回访到一男一女的概率.【详解】(1)C等级的人数和所占比可得抽取的总人数为:(名),∴“优秀”等级对应的扇形圆心角度数为:,B等级的人数为:(名),D等级的人数为:(名),∴补全条形统计图如下所示:(2)(名),∴该校竞赛成绩“优秀”的学生人数为700名;(3)∵抽取不及格的人数有5名,其中有2名女生,∴有3名男生,设3名男生分别为,,,2名女生分别为,,列表格如下所示:∴总的结果有20种,一男一女的有12种,∴回访到一男一女的概率为.【点睛】本题考查统计与概率,其中涉及到条形统计图与扇形统计图相关联问题,用样本估计总体以及用列举法求概率,读懂条形统计图和扇形统计图所给出的条件是解题的关键.2、(1);(2)李老师和王老师被分配到同一个监督岗的概率为.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算.【详解】解:(1)因为设立了四个“服务监督岗”:“洗手监督岗”,“戴口罩监督岗”,“戴口罩监督岗”,“就餐监督岗”而“操场活动监督岗”是其中之一,∴王老师被分配到“就餐监督岗”的概率=;故答案为:;(2)画树状图为:由树状图可知共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,∴李老师和王老师被分配到同一个监督岗的概率==.【点睛】本题考查了列举法求解概率,列表法与树状图法求解概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.3、(1)见解析,;(2)见解析,(3)绕点O顺时针时针旋转【分析】(1)根据题意得:关于原点的对称点为,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.(1)解:根据题意得:关于原点的对应点为,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到.【点睛】本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.4、(1)30°,70°,40°;(2)∠AOC-∠BOE=40°,理由见解析;(3)t的取值为5或20或62【分析】(1)先根据已知求出∠DOC、∠BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;(2)设旋转角为x,用x表示∠AOC和∠BOE,即可得出结论;(3)分①OA为∠DOC的平分线;②OC为∠DOA的平分线;③OD为∠COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.(1)解:∵∠EOC=130°,∠AOB=∠BOE=90°,∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,当t=4时,旋转角4×5°=20°,∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,∠BOE-∠AOC=70°-30°=40°,故答案为:30°,70°,40°;(2)解:∠AOC-∠BOE=40°,理由为:设旋转角为x,当三角板旋转至边AB与射线OE相交时,∠AOC=x-50°,∠BOE=x-90°,∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;(3)解:存在,①当OA为∠DOC的平分线时,旋转角5t=∠DOC=25,∴t=5;②当OC为∠DOA的平分线时,旋转角5t=2∠DOC=100,∴t=20;③当OD为∠COA的平分线时,360-5t=∠DOC=50,∴t=62,综上,满足条件的t的取值为5或20或62.【点睛】本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.5、(1)①A1B1;②2或3;(2)b的最大值为,此时BC=;b的最小值为,此时BC=【分析】(1)①根据题意作出图象即可解答;②根据“关联线段”的定义,可确定线段A2B2存在“关联线段”,再分情况解答即可;(2)设与AB对应的“关联线段”是A’B’,由题意可知:当点A’(1,0)时,b最大,当点A’(-1,0)时,b最小;然后分别画出图形求解即可;【详解】解:(1)①作出各点关于直线y=x+2的对称点,如图所示,只有A1B1符合题意;故答案为:A1B1;②由于直线A1B1与直线y=-x+m垂直,故A1B1不是⊙O的关于直线y=-x+m对称的“关联线段”;由于线段A3B3=,而圆O的最大弦长直径=2,故A3B3也不是⊙O的关于直线y=-x+m对称的“关联线段”;直线A2B2的解析式是y=-x+5,且,故A2B2是⊙O的关于直线y=x+2对称的“关联线段”;当A2B2是⊙O的关于直线y=-x+m对称的“关联线段”,且对应两个端点分别是(0,1)与(1,0)时,m=3,当A2B2是⊙O的关于直线y=-x+m对称的“关联线段”,且对应两个端点分别是(0,-1)与(-1,0)时,m=2,故答案为:2或3.(2)设与AB对应的“关联线段”是A’B’,由题意可知:当点A’(1,0)时,b最大,当点A’(-1,0)时,b最小;当点A’(1,0)时,如图,连接OB’,CB’,作B’M⊥x轴于点M,∴CA’=CA=3,∴点C坐标为(4,0),代入直线,得b=;∵A’B’=OA’=OB’=1,∴△OA’B’是等边三角形,∴OM=,,在直角三角形CB’M中,CB'=,即;当点A’(-1,0)时,如图,连接OB’,CB’,作B’M⊥x轴于点M,∴CA’=CA=3,∴点C坐标为(2,0),代入直线,得b=;∵A’B’=OA’=O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论