解析卷-沪科版9年级下册期末试卷含答案详解(研优卷)_第1页
解析卷-沪科版9年级下册期末试卷含答案详解(研优卷)_第2页
解析卷-沪科版9年级下册期末试卷含答案详解(研优卷)_第3页
解析卷-沪科版9年级下册期末试卷含答案详解(研优卷)_第4页
解析卷-沪科版9年级下册期末试卷含答案详解(研优卷)_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版9年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为()A. B. C. D.2、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是()A. B. C. D.3、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是()A.AM=BM B.CM=DM C. D.4、下列说法错误的是()A.必然事件发生的概率是1 B.不可能事件发生的概率为0C.随机事件发生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能发生5、下列语句判断正确的是()A.等边三角形是轴对称图形,但不是中心对称图形B.等边三角形既是轴对称图形,又是中心对称图形C.等边三角形是中心对称图形,但不是轴对称图形D.等边三角形既不是轴对称图形,也不是中心对称图形6、7个小正方体按如图所示的方式摆放,则这个图形的左视图是()A.B. C.D.7、中国有悠久的金石文化,印信是金石文化的代表之一.南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印.它的表面均由正方形和等边三角形组成(如图1),可以看成图2所示的几何体.从正面看该几何体得到的平面图形是()A. B. C. D.8、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是()A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_______.2、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.3、边长为2的正三角形的外接圆的半径等于___.4、一个盒子中装有标号为,,,的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于的概率为______.5、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_______.6、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.7、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.三、解答题(7小题,每小题0分,共计0分)1、在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N),特别地,若图形M,N有公共点,规定d(M,N)=0.已知:如图,点A(,0),B(0,).(1)如果⊙O的半径为2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半径为r,且d(⊙O,线段AB)=0,求r的取值范围;(3)如果C(m,0)是x轴上的动点,⊙C的半径为1,使d(⊙C,线段AB)<1,直接写出m的取值范围.2、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.已知点N(3,0),A(1,0),,.(1)①在点A,B,C中,线段ON的“二分点”是______;②点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;(2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.3、如图,已知AB是⊙O的直径,,连接OC,弦,直线CD交BA的延长线于点.(1)求证:直线CD是⊙O的切线;(2)若,,求OC的长.4、如图,AB是的直径,CD是的一条弦,且于点E.(1)求证:;(2)若,,求的半径.5、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE),连接BD,过点C作CFBD交AB于点G,交⊙O于点F,连接AF.求证:AG=AF.6、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标:;(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.7、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).-参考答案-一、单选题1、B【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.【详解】解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;故取得的小正方体恰有三个面被涂色.的概率为.故选:B.【点睛】此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.2、A【分析】首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【详解】解:∵抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,∴正面都朝上的概率是:

.故选A.【点睛】本题考查了列举法求概率的知识.此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比.3、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦AB⊥CD,CD过圆心O,∴AM=BM,,,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.4、D【分析】根据概率的意义分别判断后即可确定正确的选项.【详解】解:A.必然事件发生的概率是1,故该选项正确,不符合题意;B.不可能事件发生的概率是0,故该选项正确,不符合题意;C.随机事件发生的可能性越大,它的概率就越接近1,故该选项正确,不符合题意;D.概率很小的事件也可能发生,故该选项不正确,符合题意;故选D【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.5、A【分析】根据等边三角形的对称性判断即可.【详解】∵等边三角形是轴对称图形,但不是中心对称图形,∴B,C,D都不符合题意;故选:A.【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.6、C【分析】细心观察图中几何体摆放的位置,根据左视图是从左面看到的图象判定则可.【详解】解:从左边看,是左边3个正方形,右边一个正方形.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7、D【分析】找到从正面看所得到的图形即可.【详解】解:从正面看是一个正六边形,里面有2个矩形,故选D.【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.8、C【分析】如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论.【详解】解:如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,由题意可得AB垂直平分线段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH⩾CT,∴CT⩽6+3=9,∴CT的最大值为9,∴△ABC的面积的最大值为=27,故选:C.【点睛】本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.二、填空题1、【分析】先用列表法分析所有等可能的结果和摸到两个都是红球的结果数,然后根据概率公式求解即可.【详解】解:记红球为,白球为,列表得:∵一共有12种情况,摸到两个都是红球有2种,∴P(两个球都是红球),故答案是.【点睛】本题主要考查了用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.2、60【分析】根据弧长公式求解即可.【详解】解:,解得,,故答案为:60.【点睛】本题考查了弧长公式,灵活应用弧长公式是解题的关键.3、【分析】过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.【详解】如图所示,是正三角形,故O是的中心,,∵正三角形的边长为2,OE⊥AB∴,,∴,由勾股定理得:,∴,∴,∴(负值舍去).故答案为:.【点睛】本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.4、【分析】根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等可能的情况数,其中摸出的小球标号之和大于5的有4种,则摸出的小球标号之和大于5的概率为.故答案为:.【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.5、##【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【详解】解:延长AG交CD于M,如图1,∵ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,∵AD=CD,∠ADB=∠BDC,DG=DG,∴△ADG≌△DGC,∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,∴△ADM≌△CDF,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH,∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD=,∵DH≥OD-OH,∴DH≥-1,∴DH的最小值为-1,故答案为:-1.【点睛】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.6、【分析】根据题中点的坐标可得圆的直径,半径为1,分析以AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.【详解】解:如图所示:当点P到如图位置时,的面积最大,∵、,∴圆的直径,半径为1,∴以AB定长为底,点D在圆上,高最大为圆的半径,如图所示:此时面积的最大值为:;如图所示:连接AP,∵PD切于点D,∴,∴,设点,在中,,,∴,在中,,∴,则,当时,PD取得最小值,最小值为,故答案为:①;②.【点睛】题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.7、45【分析】连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.【详解】解:连接OC,OD,∵直径AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵长为6π,∴阴影部分的面积为S阴影=S扇形OCD=,故答案为:45π.【点睛】本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.三、解答题1、(1)0,;(2);(3)【分析】(1)根据新定义,即可求解;(2)过点O作OD⊥AB于点D,根据三角形的面积,可得,再由d(⊙O,线段AB)=0,可得当⊙O的半径等于OD时最小,当⊙O的半径等于OB时最大,即可求解;(3)过点C作CN⊥AB于点N,利用锐角三角函数,可得∠OAB=60°,然后分三种情况:当点C在点A的右侧时,当点C与点A重合时,当点C在点A的左侧时,即可求解.【详解】解:(1)∵⊙O的半径为2,A(,0),B(0,).∴,∴点A在⊙O上,点B在⊙O外,∴d(A,⊙O)=,∴d(B,⊙O)=;(2)过点O作OD⊥AB于点D,∵点A(,0),B(0,).∴,∴,∵,∴∴,∵d(⊙O,线段AB)=0,∴当⊙O的半径等于OD时最小,当⊙O的半径等于OB时最大,∴r的取值范围是,(3)如图,过点C作CN⊥AB于点N,∵点A(,0),B(0,).∴,∴,∴∠OAB=60°,∵C(m,0),当点C在点A的右侧时,,∴,∴,∵d(⊙C,线段AB)<1,⊙C的半径为1,∴,解得:,当点C与点A重合时,,此时d(⊙C,线段AB)=0,当点C在点A的左侧时,,∴,∴,解得:,∴.【点睛】本题主要考查了点与圆的位置关系,点与直线的位置关系,理解新定义,熟练掌握点与圆的位置关系,点与直线的位置关系是解题的关键.2、(1)①B和C;②或;(2)或【分析】(1)①分别找出点A,B,C到线段ON的最小值和最大值,是否满足“二分点”定义即可;②对a的取值分情况讨论:、、和,根据“二分点”的定义可求解;(2)设线段AN上存在的“二分点”为,对的取值分情况讨论、,、,和,根据“二分点”的定义可求解.【详解】(1)①∵点A在ON上,故最小值为0,不符合题意,点B到ON的最小值为,最大值为,∴点B是线段ON的“二分点”,点C到ON的最小值为1,最大值为,∴点C是线段ON的“二分点”,故答案为:B和C;②若时,如图所示:点C到OD的最小值为,最大值为,∵点C为线段OD的“二分点”,∴,解得:;若,如图所示:点C到OD的最小值为1,最大值为,满足题意;若时,如图所示:点C到OD的最小值为1,最大值为,∵点C为线段OD的“二分点”,∴,解得:(舍);若时,如图所示:点C到OD的最小值为,最大值为,∵点C为线段OD的“二分点”,∴,解得:或(舍),综上所得:a的取值范围为或;(2)如图所示,设线段AN上存在的“二分点”为,当时,最小值为:,最大值为:,∴,即,∵,∴∴;当,时,最小值为:,最大值为:,∴∴,即,∵,∴,∵,∴不存在;当,时,最小值为:,最大值为:,∴,即,∴,∵,∴不存在;当时,最小值为:,最大值为:,∴,即,∴,∵,∴,综上所述,r的取值范围为或.【点睛】本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.3、(1)见解析;(2)【分析】(1)连接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,从而可证得△OBC≌△ODC,即可证得CD是⊙O的切线;(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,从而可得,则可求得OC的长.【详解】(1)连接OD,∵,∴.又∵,∴,∴.在与中,∴,∴.又∵,∴,∴是的切线.(2)∵,∴,∴,∴.又∵,∴,∴,∴,∴,∴,∴OC=15【点睛】本题是圆的综合,它考查了切线的判定,三角形全等的判定与性质,相似三角形的判定与性质等知识;证明圆的切线时,往往作半径.4、(1)见解析;(2)3【分析】(1)根据∠D=∠B,∠BCO=∠B,代换证明;(2)根据垂径定理,得CE=,,利用勾股定理计算即可.【详解】(1)证明:∵OC=OB,∴∠BCO=∠B;∵,∴∠B=∠D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论