解析卷甘肃省合作市中考数学真题分类(勾股定理)汇编定向训练试卷(含答案详解版)_第1页
解析卷甘肃省合作市中考数学真题分类(勾股定理)汇编定向训练试卷(含答案详解版)_第2页
解析卷甘肃省合作市中考数学真题分类(勾股定理)汇编定向训练试卷(含答案详解版)_第3页
解析卷甘肃省合作市中考数学真题分类(勾股定理)汇编定向训练试卷(含答案详解版)_第4页
解析卷甘肃省合作市中考数学真题分类(勾股定理)汇编定向训练试卷(含答案详解版)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省合作市中考数学真题分类(勾股定理)汇编定向训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在外面的长为hcm,则h的取值范围是()A.0<h≤11 B.11≤h≤12 C.h≥12 D.0<h≤122、如图,嘉嘉在A时测得一棵4米高的树的影长为,若A时和B时两次日照的光线互相垂直,则B时的影长为(

)A. B. C. D.3、《九章算术》是我国古代数学名著,记载着这样一个问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”大意是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长度分别是多少?设芦苇的长度为x尺,则可列方程为()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)24、如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为(

)A.10m B.15m C.18m D.20m5、如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为(

)A.20dm B.25dm C.30dm D.35dm6、为⊙外一点,与⊙相切于点,,,则的长为(

)A. B. C. D.7、如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是(

)A. B. C. D.第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,一个高,底面周长的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少为___________长.2、等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是_______cm.3、如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了________步路(假设步为米),却踩伤了花草.4、设,是直角三角形的两条直角边长,若该三角形的周长为24,斜边长为10,则的值为________.5、如图,已知四边形中,,则四边形的面积等于________.6、如图,点在正方形的边上,若,,那么正方形的面积为_.7、如图,在矩形中,,垂足为点.若,,则的长为______.8、图,在菱形ABCD中,,是锐角,于点E,M是AB的中点,连接MD,若,则的值为______.三、解答题(7小题,每小题10分,共计70分)1、如图所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)出发3s后,求PQ的长;(2)当点Q在边BC上运动时,出发多久后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.2、我方侦查员小王在距离东西向公路400米处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外线测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?3、台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向由行驶向,已知点为海港,并且点与直线上的两点,的距离分别为,,又,以台风中心为圆心周围250km以内为受影响区域.(1)求的度数;(2)海港受台风影响吗?为什么?4、如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.(1)求梯子底端B外移距离BD的长度;(2)猜想CE与BE的大小关系,并证明你的结论.5、台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A、B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C会受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?6、有一只喜鹊在一棵高3米的小树的树梢上觅食,它的巢筑在距离该树24米,高为14米的一棵大树上,且巢离大树顶部为1米,这时,它听到巢中幼鸟求助的叫声,立刻赶过去,如果它的飞行速度为每秒5米,那么它至少几秒能赶回巢中?7、小明爸爸给小明出了一道题:如图,修公路遇到一座山,于是要修一条隧道.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工,过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量,,米,米.若施工队每天挖100米,求施工队几天能挖完?-参考答案-一、单选题1、B【解析】【分析】根据题意画出图形,先找出h的值为最大和最小时筷子的位置,再根据勾股定理解答即可.【详解】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===13cm,∴h=24﹣13=11cm.∴h的取值范围是11cm≤h≤12cm.故选:B.【考点】本题考查了勾股定理的实际应用问题,解答此题的关键是根据题意画出图形找出何时h有最大及最小值,同时注意勾股定理的灵活运用,有一定难度.2、A【解析】【分析】根据勾股定理,求出FC=,令DE=x,在Rt中,EC2=,在Rt中,EC2==,代入求解即可.【详解】解:由题意,得∠ECF=∠CDF=∠CDE=90°,CD=4m,=,由勾股定理,得FC=,EC2=,EC2=,∴=,令DE=x,则EF=x+8,∴,整理,得16x=32,解得x=2.故选:A.【考点】本题考查利用勾股定理求线段长,拓展一元一次方程,正确的运算能力是解决问题的关键.3、C【解析】【分析】首先设芦苇长x尺,则水深为(x−1)尺,根据勾股定理可得方程(x−1)2+52=x2.【详解】解:设芦苇长x尺,由题意得:(x−1)2+52=x2,即x2﹣52=(x﹣1)2故选:C.【考点】此题主要考查了勾股定理的应用,解题的关键是读懂题意,从题中抽象出勾股定理这一数学模型.4、C【解析】【详解】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,∴AC===13m,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.5、B【解析】【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【详解】三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故选B.【考点】本题考查了平面展开——最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.6、A【解析】【分析】连接OT,根据切线的性质求出求,结合利用含的直角三角形的性质求出OT,再利用勾股定理求得PT的长度即可.【详解】解:连接OT,如下图.∵与⊙相切于点,∴.∵,,∴,∴.故选:A.【考点】本题考查了切线的性质,含的直角三角形的性质,勾股定理,求出OT的长度是解答关键.7、A【解析】【详解】先用勾股定理耱出三角形的三边,再根据勾股定理的逆定理判断出△ABC是直角三角形,最后设BC边上的高为h,利用三角形面积公式建立方程即可得出答案.解:由勾股定理得:,,,,即∴△ABC是直角三角形,设BC边上的高为h,则,∴.故选A.点睛:本题主要考查勾股理及其逆定理.借助网格利用勾股定理求边长,并用勾股定理的逆定理来判断三角形是否是直角三角形是解题的关键.二、填空题1、20m.【解析】【分析】试题分析:要求登梯的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】将圆柱表面按一周半开展开呈长方形,

∵圆柱高16m,底面周长8m,设螺旋形登梯长为xm,∴x2=(1×8+4)2+162=400,∴登梯至少=20m故答案为:20m【考点】本题考查圆柱形侧面展开图新问题,涉及勾股定理,掌握按要求将圆柱侧面展开图形的方法,会利用圆周,高与对角线组成直角三角形,用勾股定理解决问题是关键.2、8【解析】【详解】如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案为8.3、【解析】【分析】少走的距离是AC+BC-AB,在直角△ABC中根据勾股定理求得AB的长即可.【详解】解:如图,∵在中,,∴米,则少走的距离为:米,∵步为米,∴少走了步.故答案为:.【考点】本题考查正确运用勾股定理.善于观察题目的信息,掌握勾股定理是解题的关键.4、48【解析】【分析】由该三角形的周长为24,斜边长为10可知a+b+10=24,再根据勾股定理和完全平方公式即可求出ab的值.【详解】解:∵三角形的周长为24,斜边长为10,∴a+b+10=24,∴a+b=14,∵a、b是直角三角形的两条直角边,∴a2+b2=102,则a2+b2=(a+b)2−2ab=102,即142−2ab=102,∴ab=48.故答案为:48.【考点】本题主要考查了勾股定理,掌握利用勾股定理证明线段的平方关系及完全平方公式的变形求值是解题的关键.5、36【解析】【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,最后利用三角形的面积公式求解即可.【详解】连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC=,在△ACD中,AC2+AD2=25+144=169=CD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•AD=×3×4+×5×12=36.【考点】本题考查了勾股定理及勾股定理的逆定理,正确作出辅助线是解题的关键.6、.【解析】【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【详解】解:由勾股定理得,,正方形的面积,故答案为.【考点】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.7、3【解析】【分析】在中,由正弦定义解得,再由勾股定理解得DE的长,根据同角的余角相等,得到,最后根据正弦定义解得CD的长即可解题.【详解】解:在中,在矩形中,故答案为:3.【考点】本题考查矩形的性质、正弦、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.8、【解析】【分析】延长DM交CB的延长线于点首先证明,设,利用勾股定理构建方程求出x即可解决问题.【详解】延长DM交CB的延长线于点H,四边形ABCD是菱形,,,,,,≌,,,,设,,,,,,或舍弃,,故答案为.【考点】本题考查了菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,正确添加辅助线,构造全等三角形解决问题是解决本题的关键.三、解答题1、(1)PQ=cm(2)出发秒后△PQB能形成等腰三角形(3)当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.【解析】【分析】(1)可求得AP和BQ,则可求得BP,由勾股定理即可得出结论;(2)用t可分别表示出BP和BQ,根据等腰三角形的性质可得到BP=BQ,可得到关于t的方程,可求得t;(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分BQ=BC、CQ=BC和BQ=CQ三种情况,分别得到关于t的方程,可求得t的值.(1)当t=3时,则AP=3,BQ=2t=6,∵AB=16cm,∴BP=AB﹣AP=16﹣3=13(cm),在Rt△BPQ中,PQ===(cm).(2)由题意可知AP=t,BQ=2t,∵AB=16,∴BP=AB﹣AP=16﹣t,当△PQB为等腰三角形时,则有BP=BQ,即16﹣t=2t,解得t=,∴出发秒后△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE=,∴CE===,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.【考点】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.2、速度为30米每秒【解析】【分析】根据勾股定理求得的长度,再根据速度等于路程除以时间即可求得敌方汽车的速度.【详解】,,米每秒,答:敌方汽车的速度为30米每秒.【考点】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.3、(1)90°;(2)受台风影响,理由见解析【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而得出∠ACB的度数;(2)利用三角形面积得出CD的长,进而得出海港C是否受台风影响.【详解】解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受台风影响.【考点】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.4、(1)BD=1m;(2)CE与BE的大小关系是CE=BE,证明见解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根据勾股定理求出OD,即可求出答案;(2)求出△AOB和△DOC全等,根据全等三角形的性质得出OC=OB,∠ABO=∠DCO,求出∠OCB=∠OBC,求出∠EBC=∠ECB,根据等腰三角形的判定得出即可.【详解】(1)∵AO⊥OD,AO=4m,AB=5m,∴OB==3m,∵梯子的顶端A沿墙下滑1m至C点,∴OC=AO﹣AC=3m,∵CD=AB=5m,∴由勾股定理得:OD=4m,∴BD=OD﹣OB=4m﹣3m=1m;(2)CE与BE的大小关系是CE=BE,证明如下:连接CB,由(1)知:AO=DO=4m,AB=CD=5m,∵∠AOB=∠DOC=90°,在Rt△AOB和Rt△DOC中,∴Rt△AOB≌Rt△DOC(HL),∴∠ABO=∠DCO,OC=OB,∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB,∴∠EBC=∠ECB,∴CE=BE.【考点】本题考查了勾股定理,等腰三角形的性质和判定,全等三角形的判定与性质等,能灵活运用勾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论