考点解析-北京市西城区育才学校7年级数学下册第四章三角形综合训练试卷(详解版)_第1页
考点解析-北京市西城区育才学校7年级数学下册第四章三角形综合训练试卷(详解版)_第2页
考点解析-北京市西城区育才学校7年级数学下册第四章三角形综合训练试卷(详解版)_第3页
考点解析-北京市西城区育才学校7年级数学下册第四章三角形综合训练试卷(详解版)_第4页
考点解析-北京市西城区育才学校7年级数学下册第四章三角形综合训练试卷(详解版)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市西城区育才学校7年级数学下册第四章三角形综合训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、以下列各组长度的线段为边,能构成三角形的是()A.1cm,1cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.3cm,2cm,1cm2、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是()A.3cm B.6cm C.10cm D.12cm3、在下列长度的各组线段中,能组成三角形的是()A.2,4,7 B.1,4,9 C.3,4,5 D.5,6,124、已知线段AB=9cm,AC=5cm,下面有四个说法:①线段BC长可能为4cm;②线段BC长可能为14cm;③线段BC长不可能为3cm;④线段BC长可能为9cm.所有正确说法的序号是()A.①② B.③④ C.①②④ D.①②③④5、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是()A.8 B.10 C.9 D.166、下列叙述正确的是()A.三角形的外角大于它的内角 B.三角形的外角都比锐角大C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角7、下列条件中,能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,AC=DF B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.AB=DE,BC=EF,∠A=∠E8、下列长度的三条线段能组成三角形的是()A.348 B.4410 C.5610 D.56119、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为()A.8 B.10 C.20 D.4010、如图,已知AB=AD,CB=CD,可得△ABC≌△ADC,则判断的依据是()A.SSS B.SAS C.ASA D.HL第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,AB=CD,若要判定△ABD≌△CDB,则需要添加的一个条件是____________.2、已知:如图,AB=DB.只需添加一个条件即可证明.这个条件可以是______.(写出一个即可).3、一个零件的形状如图,按规定∠A=90°,∠B=∠D=25°,判断这个零件是否合格,只要检验∠BCD的度数就可以了.量得∠BCD=150°,这个零件______(填“合格”不合格”).4、如图,已知AB=12m,CA⊥AB于点A,DB⊥AB于点B,且AC=4m,点P从点B向点A运动,每分钟走1m,点Q从点B向点D运动,每分钟走2m.若P,Q两点同时出发,运动_____分钟后,△CAP与△PQB全等.5、如图,,,,则、两点之间的距离为______.6、如图,△PBC的面积为5cm2,BP平分∠ABC,AP⊥BP于点P,则△ABC的面积为_____cm2.7、已知a,b,c是△ABC的三边,化简:|a+b-c|+|b-a-c|=________.8、如图,已知AC与BD相交于点P,ABCD,点P为BD中点,若CD=7,AE=3,则BE=_________.9、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.10、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.三、解答题(6小题,每小题10分,共计60分)1、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.2、在中,,,点D是直线AC上一动点,连接BD并延长至点E,使.过点E作于点F.(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:.(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.3、如图,在长方形ABCD中,AB=4,BC=5,延长BC到点E,使得CE=CD,连结DE.若动点P从点B出发,以每秒2个单位的速度沿着BC-CD-DA向终点A运动,设点P的运动时间为t秒.(1)CE=;当点P在BC上时,BP=(用含有t的代数式表示);(2)在整个运动过程中,点P运动了秒;(3)当t=秒时,△ABP和△DCE全等;(4)在整个运动过程中,求△ABP的面积.4、如图,于于F,若,(1)求证:平分;(2)已知,求的长.5、已知∠ACD=90°,MN是过点A的直线,AC=DC,且DB⊥MN于点B,如图易证BD+ABCB,过程如下:解:过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN,∴∠ABC+∠CBD=90°,CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BECB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)当MN绕A旋转到如图(2)位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并给予证明.(2)当MN绕A旋转到如图(3)位置时,BD、AB、CB满足什么样关系式,请直接写出你的结论.6、如图,小明站在堤岸的A点处,正对他的S点停有一艘游艇.他想知道这艘游艇距离他有多远,于是他沿堤岸走到电线杆B旁,接着再往前走相同的距离,到达C点.然后他向左直行,当看到电线杆与游艇在一条直线上时停下来,此时他位于D点.小明测得C,D间的距离为90m,求在A点处小明与游艇的距离.-参考答案-一、单选题1、C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、1+1=2<8,不能组成三角形,故此选项不合题意;B、3+3=6,不能组成三角形,故此选项不符合题意;C、3+4=7>5,能组成三角形,故此选项符合题意;D、1+2=3,不能组成三角形,故此选项不合题意;故选:C.【点睛】本题考查了构成三角形的条件,掌握“任意两边之和大于第三边,任意两边之差小于第三边”是解题的关键.2、C【分析】设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为cm,则所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.3、C【分析】根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.【详解】解:A、∵,∴不能构成三角形;B、∵,∴不能构成三角形;C、∵,∴能构成三角形;D、∵,∴不能构成三角形.故选:C.【点睛】本题主要考查运用三角形三边关系判定三条线段能否构成三角形的情况,理解构成三角形的三边关系是解题关键.4、D【分析】分三种情况:C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:∵线段AB=9cm,AC=5cm,∴如图1,A,B,C在一条直线上,∴BC=AB−AC=9−5=4(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=9+5=14(cm),故②正确;如图3,当A,B,C不在一条直线上,9−5=4cm<BC<9+5=14cm,故线段BC可能为9cm,不可能为3cm,故③,④正确.故选D.【点睛】此题主要考查了三角形三边关系,线段之间的关系,正确分类讨论是解题关键.5、C【分析】延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:SΔABD=SΔADE,SΔBDC=S【详解】解:如图,延长BD交AC于点E,∵AD平分,,∴,,在和中,,∴,∴,∴SΔABD=S∴SΔADC故选:C.【点睛】题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.6、D【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.7、A【分析】根据全等三角形的判定方法,对各选项分别判断即可得解.【详解】解:A、∠A=∠D,∠B=∠E,AC=DF,根据AAS可以判定,故此选项符合题意;B、∠A=∠E,AB=EF,∠B=∠D,AB与EF不是对应边,不能判定,故此选项不符合题意;C、∠A=∠D,∠B=∠E,∠C=∠F,没有边对应相等,不可以判定,故此选项不符合题意;D、AB=DE,BC=EF,∠A=∠E,有两边对应相等,一对角不是对应角,不可以判定,故此选项不符合题意;故选A.【点睛】本题考查了全等三角形的判定方法,一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8、C【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.9、C【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,的面积为,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.10、A【分析】由利用边边边公理证明即可.【详解】解:故选A【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.二、填空题1、∠1=∠2(或填AD=CB)【分析】根据题意知,在△ABD与△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【详解】解:∵在△ABD与△CDB中,AB=CD,BD=DB,∴添加∠1=∠2时,可以根据SAS判定△ABD≌△CDB,添加AD=CB时,可以根据SSS判定△ABD≌△CDB,,故答案为∠1=∠2(或填AD=CB).【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、AC=DC【分析】由题意可得,BC为公共边,AB=DB,即添加一组边对应相等,可证△ABC与△DBC全等.【详解】解:∵AB=DB,BC=BC,添加AC=DC,∴在△ABC与△DBC中,,∴△ABC≌△DBC(SSS),故答案为:AC=DC.【点睛】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.3、不合格【分析】连接AC并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可进行判定.【详解】解:如图,连接AC并延长,由三角形的外角性质可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴这个零件不合格.故答案为:不合格.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.4、4【分析】根据题意CA⊥AB,DB⊥AB,则,则分或两种情况讨论,根据路程等于速度乘以时间求得的长,根据全等列出一元一次方程解方程求解即可【详解】解:CA⊥AB,DB⊥AB,点P从点B向点A运动,每分钟走1m,点Q从点B向点D运动,每分钟走2m,设运动时间为,且AC=4m,,当时则,即,解得当时,则,即,解得且不符合题意,故舍去综上所述即分钟后,△CAP与△PQB全等.故答案为:【点睛】本题考查了三角形全等的性质,根据全等的性质列出方程是解题的关键.5、55【分析】根据题意首先证明△AOB和△DOC全等,再根据全等三角形对应边相等即可得出答案.【详解】解:,,,即,在和中,,≌,.故答案为:.【点睛】本题主要考查全等三角形的应用以及两点之间的距离,解题的关键是掌握全等三角形对应边相等.6、10【分析】根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【详解】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S阴影=10(cm2),故答案为:10.【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.7、【分析】首先利用三角形的三边关系得出,然后根据求绝对值的法则进行化简即可.【详解】解:∵是的三条边,∴,∴=.故答案为:.【点睛】熟悉三角形的三边关系和求绝对值的法则,是解题的关键,注意,去绝对值后,要先添加括号,再去括号,这样不容易出错.|a+b-c|+|b-a-c|8、4【分析】由题意利用全等三角形的判定得出,进而依据全等三角形的性质得出进行分析计算即可.【详解】解:∵ABCD,∴,∵点P为BD中点,∴,∵,,∴,∴,∵CD=7,AE=3,∴.故答案为:4.【点睛】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.9、30°【分析】根据三角形的外角的性质,即可求解.【详解】解:∵,∴,∵∠ACD=75°,∠A=45°,∴.故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.10、120【分析】根据三角形的外角性质,可得,即可求解.【详解】解:∵是的外角,∴,∵∠A=50°,∠B=70°,∴.故答案为:120【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.三、解答题1、见解析【分析】先由BF=CE说明BC=EF.然后运用SAS证明△ABC≌△DEF,最后运用全等三角形的性质即可证明.【详解】证明:∵BF=CE,∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).∴AC=DF.【点睛】本题主要考查了全等三角形的判定与性质,正确证明△ABC≌△DEF是解答本题的关键.2、(1)(2)见解析(3)【分析】(1)利用边相等和角相等,直接证明,即可得到结论.(2)利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.(3)要证明,先利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.【详解】(1)解:,,,在和中,,.(2)解:当点D在线段AC的延长线上时,如下图所示:,,,在和中,,,,.(3)解:,如下图所示:,,,在和中,,,,.【点睛】本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.3、(1)2,2t;(2)7;(3)1或6;(4)△ABP的面积为.【分析】(1)根据CE=CD可求得CE的长,利用速度时间即可求得BP的长;(2)先计算出总路程,再利用路程速度即可计算出用时;(3)分两种情况,利用全等三角形的性质即可求解;(4)分三种情况,利用三角形的面积公式求解即可.【详解】解:(1)∵CE=CD,AB=CD=4,∴CE=2,∵点P从点B出发,以每秒2个单位的速度运动,∴BP=2t;故答案为:2,2t;(2)点P运动的总路程为BC+CD+DA=5+4+5=14,∴在整个运动过程中,点P运动了(秒);故答案为:7;(3)当点P在BC上时,△ABP≌△DCE,∴BP=CE=2,∴2t=2,解得:t=1;当点P在AD上时,△BAP≌△DCE,∴AP=CE=2,点P运动的总路程为BC+CD+DA-AP=5+4+5-2=12,∴2t=12,解得:t=6;综上,当t=1或6秒时,△ABP和△DCE全等;故答案为:1或6;(4)当点P在BC上,即0<t时,AB=4,BP=2t,∴△ABP的面积为ABBP=4t;当点P在CD上,即<t时,AB=4,BC=5,∴△ABP的面积为ABBC=10;当点P在BC上,即7时,AB=4,AP=14-2t,∴△ABP的面积为ABBP=28-4t;综上,△ABP的面积为.【点睛】本题考查了全等三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题.4、(1)证明见解析;(2)6【分析】(1)由题所给条件可得,即得ED=DF,则可得,则,故平分.(2)由(1)问所得条件,得AF=AE=8,则AB=8-2=6.【详解】(1)∵于于F,∴(HL)∴ED=DF∵于于F,AD=AD∴(HL)∴故平分.(2)∵BE=CF∴AF=AC-BE=10-2=8∴AE=AF=8∴AB=AE-BE=8-2=6.【点睛】本题考查了直角三角形全等的判定,所应用的定理为斜边、直角边定理:斜边和一条直角边分别相等的两个直角三角形全等(简写成HL).5、(1)AB-BD=CB,证明见解析.(2)BD-AB=CB,证明见解析.【分析】(1)仿照图(1)的解题过程即可解答.过点C作CE⊥CB于点C,与MN交于点E,根据同角(等角)的余角相等可证∠BCD=∠ACE及∠CAE=∠D,由ASA可证△ACE≌△DCB,然后由全等三角形的对应边相等可得:AE=DB,CE=CB,从而确定△ECB为等腰直角三角形,由勾股定理可得:BE=CB,由BE=AB-AE,可得BE=A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论