解析卷人教版8年级数学上册《全等三角形》综合练习试卷(含答案详解)_第1页
解析卷人教版8年级数学上册《全等三角形》综合练习试卷(含答案详解)_第2页
解析卷人教版8年级数学上册《全等三角形》综合练习试卷(含答案详解)_第3页
解析卷人教版8年级数学上册《全等三角形》综合练习试卷(含答案详解)_第4页
解析卷人教版8年级数学上册《全等三角形》综合练习试卷(含答案详解)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《全等三角形》综合练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,把沿线段折叠,使点落在点处;若,,,则的度数为(

)A. B. C. D.2、如图,在和中,,连接交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A.4 B.3 C.2 D.13、已知,如图,在△ABC中,D为BC边上的一点,延长AD到点E,连接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列结论:①△ABD为等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正确的结论个数有(

)A.1个 B.2个 C.3个 D.4个4、如图,在中,,,垂足分别为D,E,,交于点H,已知,,则的长是(

)A.1 B. C.2 D.5、下列说法:①若,则为的中点②若,则是的平分线③,则④若,则,其中正确的有(

)A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,AD,BE是的两条高线,只需添加一个条件即可证明(不添加其它字母及辅助线),这个条件可以是______(写出一个即可).2、如图,的三边的长分别为,其三条角平分线交于点,则=______.3、如图,图形的各个顶点都在33正方形网格的格点上.则______.4、如图所示,点在一块直角三角板上(其中),于点,于点,若,则_________度.5、如图,已知AD是△ABC的中线,E是AC上的一点,BE交AD于F,AC=BF,∠DAC=24°,∠EBC=32°,则∠ACB=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,AB⊥AC,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图1所示)求证:DE=BD+CE;(2)若B、C在DE的两侧(如图2所示),其他条件不变,则DE,BD,CE具有怎样的等量关系?写出等量关系,不需证明.2、如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.3、在中,,点D是直线BC上一点(点D不与点B,C重合),以AD为一边在AD的右侧作,使,,连接CE.(1)如图(1),若点D在线段BC上,和之间有怎样的数量关系?(不必说明理由)(2)若,当点D在射线BC上移动时,如图(2),和之间有怎样的数量关系?说明理由.4、如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5、方格纸上有2个图形,你能沿着格线把每一个图形都分成完全相同的两个部分吗?请画出分割线.-参考答案-一、单选题1、C【解析】【分析】由于折叠,可得三角形全等,运用三角形全等得出,利用平行线的性质可得出则即可求.【详解】解:∵沿线段折叠,使点落在点处,∴,∴,∵,,∴,∵,∴,∴,故选:C.【考点】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是,理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决.2、B【解析】【分析】根据题意逐个证明即可,①只要证明,即可证明;②利用三角形的外角性质即可证明;④作于,于,再证明即可证明平分.【详解】解:∵,∴,即,在和中,,∴,∴,①正确;∴,由三角形的外角性质得:∴°,②正确;作于,于,如图所示:则°,在和中,,∴,∴,∴平分,④正确;正确的个数有3个;故选B.【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.3、C【解析】【分析】作AF平分∠BAD.可根据证△ABF≌△ADF,推出AB=AD,得出△ABD为等腰三角形;可根据同弦所对的圆周角相等知点A、B、C、E共圆,可判出BE=CE=CD,根据三角形内角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根据∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分线.【详解】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,故①正确;∵AE=AC,∴∠6=∠4+∠7==90°−,∵∠5=∠ADB=∠ABD==90°−,∠1=∠2,∴∠5=∠6=90°−∴CE=CD,∠4=180°−∠5−∠6=180°−2(90°−)=∠1,∵∠1=∠3,∴∠4=∠3,∴BE=CE,∴BE=CE=CD,∴③正确;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,故②正确∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,故④错误;故选C.【考点】本题主要考查了全等三角形的判定和性质、同弦所对的圆周角相等、三角形内角和的相关知识,灵活运用所学知识是解题的关键.4、A【解析】【分析】利用“八字形”图形推出∠EAH=∠ECB,根据,EH=3,求出AE=4,证明△AEH≌△CEB,得到AE=CE=4,即可求出CH.【详解】解:∵,,∴∠CEB=,∵∠AHE=∠CHD,∴∠EAH=∠ECB∵,EH=3,∴AE=4,∵∠AEH=∠CEB,∠EAH=∠ECB,EH=BE,∴△AEH≌△CEB,∴AE=CE=4,∴CH=CE-EH=4-3=1,故选A.【考点】此题考查了全等三角形的判定及性质,“八字形”图形的应用,熟记全等三角形的判定定理是解题的关键.5、A【解析】【分析】根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于∠AOB的内部时候,此结论成立,故错误;当为负数时,,故错误;若,则,故正确;故选:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.二、填空题1、(答案不唯一)【解析】【分析】根据已知条件可知,故只要添加一条边相等即可证明.【详解】解:添加,AD,BE是的两条高线,,在与中,.故答案为:(答案不唯一).【考点】本题考查了三角形全等的判定,掌握三角形全等的判定是解题的关键.2、【解析】【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=.故答案为:.【考点】此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.3、45°或45度【解析】【分析】通过证明三角形全等得出∠1=∠3,再根据∠1+∠2=∠3+∠2即可得出答案.【详解】解:如图所示,由题意得,在Rt△ABC和Rt△EFC中,∵∴Rt△ABC≌Rt△EFC(SAS)∴∠3=∠1∵∠2+∠3=90°∴∠1+∠2=∠3+∠2=90°故答案为:45°【考点】本题主要考查了全等三角形的判定和性质,由证明三角形全等得出∠1=∠3是解题的关键.4、15【解析】【分析】根据,,判断OB是的角平分线,即可求解.【详解】解:由题意,,,,即点O到BC、AB的距离相等,∴OB是的角平分线,∵,∴.故答案为:15.【考点】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.5、100°或100度【解析】【分析】延长AD到M,使得DM=AD,连接BM,证△BDM≌△CDA(SAS),得得到BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,再证△BFM是等腰三角形,求出∠MBF的度数,即可解决问题.【详解】解:如图,延长AD到M,使得DM=AD,连接BM,在△BDM和△CDA中,,∴△BDM≌△CDA(SAS),∴BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,∵BF=AC,∴BF=BM,∴∠M=∠BFM=24°,∴∠MBF=180°﹣∠M﹣∠BFM=132°,∵∠EBC=32°,∴∠DBM=∠MBF﹣∠EBC=100°,∴∠C=∠DBM=100°,故答案为:100°.【考点】本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、解答题1、(1)见解析(2)DE=CE-BD【解析】【分析】(1)根据AAS证明△ADB≌△CEA,可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出结论;(2)由条件可以得出∠ADB=∠CEA=90°,∠BAD=∠ACE,再由AB=AC就可以得出△ADB≌△CEA,就可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出DE=CE-BD.(1)∵AB⊥AC,BD⊥DE,CE⊥DE∴∠BAC=90°,∠ADB=∠AEC=90°∴∠ACE+∠CAE=90°,∠BAD+∠CAE=90°,∴∠BAD=∠ACE,在△ADC与△BEC中,∠ADB=∠AEC=90°,∠BAD=∠ACE,AB=AC,∴△ADB≌△CEA(AAS),∴AD=CE,BD=AE,∵DE=AD+AE,∴DE=BD+CE;(2)DE=CE-BD理由:∵BD⊥AD,CE⊥AD,∴∠ADB=∠CEA=90°.∵AB⊥AC,∴∴∠BAD+∠CAE=90°.∵∠CAE+∠ACE=90°,∴∠BAD=∠ACE.在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE.∵AD=AE+ED,∴DE=AD-AE=CE-BD.【考点】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是解答本题的关键.2、见解析【解析】【分析】根据角平分线的性质证明△BAC≌△DAE,即可得到结果;【详解】证明:∵AC是∠BAE的平分线,∴∠BAC=∠DAE,∵∠C=∠E,AB=AD.∴△BAC≌△DAE(AAS),∴BC=DE.【考点】本题主要考查了三角形的全等判定及性质,准确利用角平分线的进行计算是解题的关键.3、(1);(2),理由见解析【解析】【分析】(1)根据题意证明,根据三角形的内角和即可求解;(2)设AD与CE交于F点,根据题意证明,根据平角的性质即可求解.【详解】(1).理由如下:,.,,,,∴=∵∴;(2).理由如下:设AD与CE交于F点.,.,,,.,.,,.【考点】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.4、详见解析【解析】【分析】(1)由角平分线定义可证△BCE≌△DCF(HL);(2)先证Rt△FAC≌Rt△EAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【详解】(1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【考点】本题考查了全等三角形的判定、性质和角平分线定义,注意:全等三角形的对应角相等,对应边相等,直角三角形全等的判定定理有SAS,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论