基础强化浙江省嵊州市中考数学真题分类(平行线的证明)汇编专题攻克试题(解析版)_第1页
基础强化浙江省嵊州市中考数学真题分类(平行线的证明)汇编专题攻克试题(解析版)_第2页
基础强化浙江省嵊州市中考数学真题分类(平行线的证明)汇编专题攻克试题(解析版)_第3页
基础强化浙江省嵊州市中考数学真题分类(平行线的证明)汇编专题攻克试题(解析版)_第4页
基础强化浙江省嵊州市中考数学真题分类(平行线的证明)汇编专题攻克试题(解析版)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省嵊州市中考数学真题分类(平行线的证明)汇编专题攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、若△ABC三个角的大小满足条件∠A:∠B:∠C=1:3:4,则∠C的大小为(

)A.22.5° B.45° C.67.5° D.90°2、如图,将沿着平行于的直线折叠,点落在点处,若,则的度数是(

)A.108° B.104° C.96° D.92°3、如图,,若,则的度数是(

)A.80° B.70° C.65° D.60°4、在中,若一个内角等于另外两个角的差,则(

)A.必有一个角等于 B.必有一个角等于C.必有一个角等于 D.必有一个角等于5、如图,将△ABC纸片沿DE折叠,点A的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于(

)A.40° B.60° C.80° D.140°6、如图,把沿线段折叠,使点落在点处;若,,,则的度数为(

)A. B. C. D.7、将一副学生用的三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)如图叠放,则下列4个结论中正确的个数有(

)①∠AOC+∠BOD=90°;②∠AOC=∠BOD;③∠AOC-∠CEA=15°;④如果OB平分∠DOC,则OC平分∠AOBA.0 B.1 C.2 D.38、下列图形中,由AB∥CD,能得到∠1=∠2的是(

)A. B.C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a________c.若a∥b,b∥c,则a________c.若a∥b,b⊥c,则a________c.2、将一副直角三角板如图放置,已知,,,则________°.3、将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.4、如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.5、如图,四边形ABCD中,点M,N分别在AB,BC上,将沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=___°.6、用反证法证明:“如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.第一步应假设:______.7、请把以下说理过程补充完整:如图,AB∥CD,∠C=∠D,如果∠1=∠2,那么∠E与∠C互为补角吗?说说你的理由.解:因为∠1=∠2,根据___________,所以EF∥________.又因为AB∥CD,根据___________,所以EF∥________.根据____________,所以∠E+________=_________°.又因为∠C=∠D,所以∠E+________=_________°,所以∠E与∠C互为补角.三、解答题(7小题,每小题10分,共计70分)1、如图,点、、、在一条直线上,与交于点,,,求证:2、已知:如图所示,DE⊥AC于点E,BC⊥AC于点C,FG⊥AB于点G,∠1=∠2,试说明CD⊥AB.3、如图所示,已知,试判断与的大小关系,并说明理由.4、在△ABC中,若存在一个内角是另外一个内角度数的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=60°,∠C=40°,可知∠A=2∠C,所以△ABC为2倍角三角形.(1)在△DEF中,∠E=40°,∠F=35°,则△DEF为倍角三角形;(2)如图,直线MN⊥直线PQ于点O,点A、点B分别在射线OP、OM上;已知∠BAO、∠OAG的角平分线分别与∠BOQ的角平分线所在的直线交于点E、F;①说明∠ABO=2∠E的理由;②若△AEF为4倍角三角形,直接写出∠ABO的度数.5、已知:如图1,,BD平分,,过点A作直线,延长CD交MN于点E(1)当时,的度数为______.(2)如图2,当时,求的度数;(3)设,用含x的代数式表示的度数.6、如图,在线段BC上有两点E,F,在线段CB的异侧有两点A,D,且满足,,,连接AF;(1)与相等吗?请说明理由.(2)若,,AF平分时,求的度数.7、如图,已知∠A=50°,∠D=40°.(1)求∠1度数;(2)求∠A+∠B+∠C+∠D+∠E的度数.-参考答案-一、单选题1、D【解析】【分析】先用∠A表示出∠B、∠C,再根据三角形的内角和定理求出∠A、∠C得结论.【详解】解:∵∠A:∠B:∠C=1:3:4,∴∠B=3∠A,∠C=4∠A.∵∠A+∠B+∠C=180,∴∠A+3∠A+4∠A=180.∴∠A=22.5.∴∠C=4∠A=4×22.5=90.故选:D.【考点】本题考查了三角形的内角和定理,掌握“三角形的内角和等于180”是解决本题的关键.2、D【解析】【分析】根据两直线平行,同位角相等可得∠ADE=∠B,再根据翻折变换的性质可得∠A′DE=∠ADE,然后根据平角等于180°列式计算即可得解.【详解】解:∵,∴∠ADE=∠B=44°,∵△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠A′DE=∠ADE=44°,∴∠A′DB=180°﹣44°﹣44°=92°.故选:D.【考点】本题考查了平行线的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.3、B【解析】【分析】由根据全等三角形的性质可得,再利用三角形内角和进行求解即可.【详解】,,,,,,故选:B.【考点】本题考查了全等三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键.4、D【解析】【分析】先设三角形的两个内角分别为x,y,则可得第三个角(180°-x-y),再分三种情况讨论,即可得到答案.【详解】设三角形的一个内角为x,另一个角为y,则第三个角为(180°-x-y),则有三种情况:①②③综上所述,必有一个角等于90°故选D.【考点】本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.5、C【解析】【分析】根据平角定义和折叠的性质,得,再利用三角形的内角和定理进行转换,得从而解题.【详解】解:根据平角的定义和折叠的性质,得.又,,,∴,故选:C【考点】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.6、C【解析】【分析】由于折叠,可得三角形全等,运用三角形全等得出,利用平行线的性质可得出则即可求.【详解】解:∵沿线段折叠,使点落在点处,∴,∴,∵,,∴,∵,∴,∴,故选:C.【考点】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是,理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决.7、D【解析】【分析】根据同角的余角相等可得∠AOC=∠BOD;根据三角形的内角和即可得出∠AOC-∠CEA=15°;根据角平分线的定义可判定OC平分∠AOB.【详解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB,即∠BOD=∠AOC,故②正确;如图,AB与OC交于点P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正确;如果OB平分∠DOC,则∠DOB=∠BOC=45°,则∠AOC=∠BOC=45°,故OC平分∠AOB,故④正确;由②知:∠AOC=∠BOD,故当∠AOC=∠BOD=45°时,∠AOC+∠BOD=90°成立,否则不成立,故①不正确;综上,②③④正确,共3个,故选:D.【考点】本题考查了余角以及三角形内角和定理,角平分线的定义,熟知余角的性质以及三角形内角和是180°是解答此题的关键.8、B【解析】【分析】根据平行四边形的性质逐项判断即可.【详解】A、∵AB//CD,∴∠1+∠2=180°.故本选项不符合题意;B、如图,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项不符合题意;D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项不符合题意.故选:B.【考点】本题考查平行线的性质,熟练掌握平行线的性质是解答的关键.二、填空题1、

∥;

∥;

⊥【解析】【详解】①∵a⊥b,b⊥c,∴a//c(垂直同一条直线的两直线互相平行)②a∥b,b∥c,∴a//c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)③如图所示:∵a∥b,∴∠1=∠2,又∵b⊥c,∴∠2=90°,∴∠1=∠2=90°,即a⊥c.故答案是://,//,⊥.2、105【解析】【分析】根据平行线的性质可得,根据三角形内角和定理以及对顶角相等即可求解.【详解】,,,∵∠E=60°,∴∠F=30°,故答案为:105【考点】本题考查了平行线的性质,三角形内角和定理,掌握平行线的性质是解题的关键.3、40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【考点】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.4、120【解析】【分析】根基三角形全等的性质得到∠C=∠C′=24°,再根据三角形的内角和定理求出答案.【详解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案为:120.【考点】此题考查三角形全等的性质定理:全等三角形的对应角相等,三角形的内角和定理.5、95【解析】【详解】∵MF//AD,FN//DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°.∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°.在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.故答案为:956、这两条直线不平行【解析】【分析】本题需先根据已知条件和反证法的特点进行证明,即可求出答案.【详解】证明:已知两条直线都和第三条直线平行;

假设这两条直线不平行,则两条直线有交点,因为过直线外一点有且只有一条直线与已知直线平行因此,两条直线有交点时,它们不可能同时与第三条直线平行因此假设与结论矛盾.故假设不成立,即如果两条直线都和第三条直线平行,那么这两条直线也互相平行.故答案为:这两条直线不平行.【考点】本题主要考查了反证法,在解题时要根据反证法的特点进行证明是本题的关键.7、内错角相等,两直线平行;AB;平行于同一条直线的两条直线平行;CD;两直线平行,同旁内角互补;∠D;180;∠C;180【解析】【分析】由已知角相等,利用内错角相等两直线平行得到AB与EF平行,再由AB与CD平行,利用平行于同一条直线的两直线平行即可得EF与CD平行,然后由两直线平行,同旁内角互补可得∠E+∠D=180°,最后等量代换得到∠E+∠C=180°.【详解】解:因为∠1=∠2,根据_内错角相等,两直线平行,所以EF∥__AB_.又因为AB∥CD,根据_平行于同一条直线的两条直线平行,所以EF∥__CD___.根据两直线平行,同旁内角互补,所以∠E+_∠D=__180°.又因为∠C=∠D,所以∠E+_∠C_=_180°,所以∠E与∠C互为补角.【考点】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.三、解答题1、证明见解析【解析】【分析】根据同位角相等,两直线平行可得AE//BF,进而可得∠E=∠2,由CE//DF可得∠F=∠2,最后根据等量代换即可证明结论.【详解】∵,∴,∴.∵CE//DF,∴.∴.【考点】本题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.2、证明见解析【解析】【分析】先利用垂直于同一条直线的两直线平行证明DE∥BC,利用内错角相等得∠2=∠DCF,即可证明GF∥DC,再利用平行线的传递性即可解题.【详解】证明:∵DE⊥AC,BC⊥AC,∴DE∥BC,∴∠2=∠DCF,又∵∠1=∠2,∴∠1=∠DCF,∴GF∥DC,又∵FG⊥AB,∴CD⊥AB.【考点】本题考查了平行线的性质和判定,中等难度,熟悉平行线的性质是解题关键.3、,理由见解析【解析】【分析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【详解】解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠4.∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).【考点】本题重点考查平行线的性质和判定,难度适中.4、(1)3(2)①见解析;②45°或36°【解析】【分析】(1)由∠E=40°,∠F=35°可知∠D=105°,再根据n倍角三角形的定义可得结论.(2)①根据三角形内角和定理及一个外角等于与它不相邻的两个内角和,利用角的和差计算即可求得结果.②首先证明∠EAF=90°,分∠EAF=4∠E和∠F=4∠E两种情形分别求解即可.(1)解:∵∠E=40°,∠F=35°,∴∠D=180°﹣40°﹣35°=105°,∴∠D=3∠F,∴△ABC为3倍角三角形,故答案为:3;(2)解:①∵AE平分∠BAO,OE平分∠BOQ,∴∠BAO=2∠EAQ,∠BOQ=2∠EOQ,由外角的性质可得:∠BOQ=∠BAO+∠ABO,∠EOQ=∠EAQ+∠E,∴∠ABO=∠BOQ﹣∠BAO=2∠EOQ﹣2∠EAQ=2∠EAQ+2∠E﹣2∠EAQ=2∠E,∴∠ABO=2∠E.②∵AE平分∠BAO,AF平分∠OAG,∴∠EAB=∠EAO,∠OAF=∠FAG,∴∠EAF=∠EAO+∠OAF=(∠BAO+∠OAG)=90°,∵△EAF是4倍角三角形,∴当∠EAF=4∠E时,∠E=×90°=22.5°,当∠F=4∠E时,∠E=×90°=18°,∵∠ABO=2∠E,∴∠ABO=45°或36°.【考点】本题考查三角形的内角和定理,角平分线的定义,角的和差计算等,读懂新定义n倍角三角形的意义并注意分类讨论是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论