版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省普宁市中考数学真题分类(平行线的证明)汇编专题测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,、是的外角角平分线,若,则的大小为(
)A. B. C. D.2、如图点E在BC的延长线上,则下列条件中,不能判定ABCD的是(
)A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180°3、如下图,在下列条件中,能判定AB//CD的是(
)A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠44、如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠35、如图,在中,,,,,连接BC,CD,则的度数是()A.45° B.50° C.55° D.80°6、如图,点E在的延长线上,下列条件不能判断的是(
)A. B. C. D.7、如图,已知中,,若沿图中虚线剪去,则等于(
)A.90° B.135° C.270° D.315°8、给出下列命题,正确的有(
)个①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,..∵,∴.∴.∴.2、如图,将三角尺和三角尺(其中)摆放在一起,使得点在同一条直线上,交于点,那么度数等于_____.3、如图,在中,,和的平分线交于点,得和的平分线交于点,得和的平分线交于点,得和的平分线交于点,得,则________度.4、如图,,的平分线交于点,是上的一点,的平分线交于点,且,下列结论:①平分;②;③与互余的角有个;④若,则.其中正确的是________.(请把正确结论的序号都填上)5、如图,将长方形纸片分别沿,折叠,点,恰好重合于点,,则__________.6、下列命题中,其逆命题成立的是__.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.7、下图是某工人加工的一个机器零件(数据如图),经过测量不符合标准.标准要求是:,且、、保持不变为了达到标准,工人在保持不变情况下,应将图中____(填“增大”或“减小”)_____度.三、解答题(7小题,每小题10分,共计70分)1、请阅读下列材料,并完成相应的任务:有趣的“飞镖图”如图,这种形似飞镖的四边形,可以形象地称它为“飞镖图”.当我们仔细观察后发现,它实际上就是凹四边形.那么它具有哪些性质呢?又将怎样应用呢?下面我们进行认识与探究:凹四边形通俗地说,就是一个角“凹”进去的四边形,其性质有:凹四边形中最大内角外面的角等于其余三个内角之和.(即如图1,∠ADB=∠A+∠B+∠C)理由如下:方法一:如图2,连接AB,则在△ABC中,∠C+∠CAB+∠CBA=180°,即∠1+∠2+∠3+∠4+∠C=180°,又∵在△ABD中,∠1+∠2+∠ADB=180°,∴∠ADB=∠3+∠4+∠C,即∠ADB=∠CAD+∠CBD+∠C.方法二:如图3,连接CD并延长至F,∵∠1和∠3分别是△ACD和△BCD的一个外角,......大家在探究的过程中,还发现有很多方法可以证明这一结论,你有自己的方法吗?任务:(1)填空:“方法一”主要依据的一个数学定理是;(2)探索:根据“方法二”中辅助线的添加方式,写出该证明过程的剩余部分;(3)应用:如图4,AE是∠CAD的平分线,BF是∠CBD的平分线,AE与BF交于G,若∠ADB=150°,∠AGB=110°,请你直接写出∠C的大小.2、如图,在三角形ABC中CD为的平分线,交AB于点D,,.(1)求证:;(2)如果,,试证明.3、已知:如图,BE平分∠ABC,∠1=∠2.求证:BC//DE.4、如图,直线分别与直线,交于点,.平分,平分,且∥.求证:∥.5、用两种方法证明“三角形的外角和等于360°”.已知:如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360°.证法1:∵________________________________________________________________,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵______________,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.请把证法1补充完整,并用不同的方法完成证法2.6、如图,△ABC中,E是AB上一点,过D作DEBC交AB于E点,F是BC上一点,连接DF.若∠AED=∠1.(1)求证:ABDF.(2)若∠1=52°,DF平分∠CDE,求∠C的度数.7、在△ABC中,∠ADB=100°,∠C=80°,∠BAD=∠DAC,BE平分∠ABC,求∠BED的度数.
-参考答案-一、单选题1、B【解析】【分析】首先根据三角形内角和与∠P得出∠PBC+∠PCB,然后根据角平分线的性质得出∠ABC和∠ACB的外角和,进而得出∠ABC+∠ACB,即可得解.【详解】∵∴∠PBC+∠PCB=180°-∠P=180°-60°=120°∵、是的外角角平分线∴∠DBC+∠ECB=2(∠PBC+∠PCB)=240°∴∠ABC+∠ACB=180°-∠DBC+180°-∠ECB=360°-240°=120°∴∠A=60°故选:B.【考点】此题主要考查角平分线以及三角形内角和的运用,熟练掌握,即可解题.2、C【解析】【分析】根据平行线的判定定理进行逐一分析解答即可.【详解】解:A、正确,符合“内错角相等,两条直线平行”的判定定理;B、正确,符合“同位角相等,两条直线平行”的判定定理;C、错误,若∠3=∠4,则AD∥BE;D、正确,符合“同旁内角互补,两条直线平行”的判定定理;故选:C.【考点】本题考查的是平行线的判定定理,比较简单.3、C【解析】【详解】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故选C.4、D【解析】【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可.【详解】由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b,故选D.【考点】本题主要考查了平行线的判定,熟记平行线的判定方法是解题的关键.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.5、B【解析】【分析】连接AC并延长交EF于点M.由平行线的性质得,,再由等量代换得,先求出即可求出.【详解】解:连接AC并延长交EF于点M.,,,,,,,故选B.【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.6、D【解析】【分析】直接利用平行线的判定方法分别判断得出答案.【详解】解:A、当∠5=∠B时,AB∥CD,不合题意;B、当∠1=∠2时,AB∥CD,不合题意;C、当∠B+∠BCD=180°时,AB∥CD,不合题意;D、当∠3=∠4时,AD∥CB,符合题意;故选:D.【考点】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.7、C【解析】【分析】如图(见解析),先根据三角形的外角性质可得,再根据邻补角的定义即可得.【详解】如图,由三角形的外角性质得:,,,故选:C.【考点】本题考查了三角形的外角性质、邻补角,熟练掌握三角形的外角性质是解题关键.8、B【解析】【详解】解:①等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;②等腰三角形两腰上的高相等,本选项正确;③等腰三角形最小边不一定底边,故本选项错误;④等边三角形的高、中线、角平分线都相等,本选项正确;⑤等腰三角形可以是钝角三角形,故本选项错误,故选B二、填空题1、、、【解析】【分析】根据两直线平行的性质定理,结合三角形内角和定理推理即可得到正确结果.【详解】解:∵,∴∴∴∴故答案为:、、【考点】本题考查平行线性质定理以及三角形内角和定理,牢记相关定理内容并能灵活应用是解题的重点.2、105°【解析】【分析】利用直角三角形的两个锐角互余求得∠ABC与∠FDE的度数,然后在△MDB中,利用三角形内角和定理求得∠DMB,再依据对顶角相等即可求解.【详解】解:∵∠ABC=90°−∠C=90°−60°=30°,∠FDE=90°−∠F=90°−45°=45°,∴∠DMB=180°−∠ABC−∠FDE=180°−30°−45°=105°,∴∠CMF=∠DMB=105°.故答案为:105°.【考点】本题考查了直角三角形两锐角互余、三角形的内角和定理以及对顶角的性质,正确求得∠DMB的度数是关键.3、【解析】【分析】根据角平分线的定义,由BA1平方∠ABC,A1C平分∠ACD,得∠A1CD=∠ACD,∠A1BC=∠ABC.根据三角形外角的性质,得∠A1=∠A1CD-∠A1BC,那么∠A1=∠ACD−ABC=∠A.再根据特殊到一般的数学思想解决此题.【详解】解:∵BA1平分∠ABC,A1C平分∠ACD,∴∠A1CD=∠ACD,∠A1BC=∠ABC.∵∠A1=∠A1CD-∠A1BC,∴∠A1=∠ACD−ABC=∠A.同理可证:∠A2=∠A1.∴∠A2=•∠A=()2∠A.以此类推,∠An=()n∠A.当n=2022,∠A2021=()2022∠A=()2022•m°=()°.故答案为:.【考点】本题主要考查三角形外角的性质、角平分线的定义,熟练掌握三角形外角的性质、角平分线的定义是解决本题的关键.4、①②【解析】【分析】由BD⊥BC及BD平分∠GBE,可判断①正确;由CB平分∠ACF、AE∥CF及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE∥CF及AC∥BG、三角形外角的性质可求得∠BDF,从而可对④作出判断.【详解】∵BD平分∠GBE∴∠EBD=∠GBD=∠GBE∵BD⊥BC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正确∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正确∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC∴与∠DBE互余的角共有4个故③错误∵AC∥BG,∠A=α∴∠GBE=α∴∵AE∥CF∴∠BGD=180°-∠GBE=180°−α∴∠BDF=∠GBD+∠BGD=故④错误即正确的结论有①②故答案为:①②【考点】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.5、##54度【解析】【分析】根据翻折可得∠MAB=∠BAP,∠NAC=∠PAC,得∠MAB+∠NAC=90°,再由,即可解决问题.【详解】解:根据翻折可知:∠MAB=∠BAP,∠NAC=∠PAC,∴∠BAC=∠PAB+∠PAC180°=90°,∴∠MAB+∠NAC=90°,∵∠NAC=∠MAB,∴∠NAC+∠NAC=90°,∴∠NAC=54°.故答案为:54°.【考点】本题主要考查翻折变换,熟练掌握和应用翻折的性质是解题的关键.6、①④##④①【解析】【详解】把一个命题的条件和结论互换就得到它的逆命题,再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.①两直线平行,同旁内角互补,正确;②如果两个角相等,那么它们是直角,错误;③如果两个实数的平方相等,那么这两个实数相等,错误;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,正确.故答案为①④.7、
减小
15【解析】【分析】延长EF到H与CD交于H,先利用对顶角的性质和三角形内角和定理求出DCE=60°,然后根据三角形外角的性质得到∠DHE=∠E+∠DCE=100°,∠DFE=∠D+∠DHF,由此求解即可.【详解】解:如图,延长EF到H与CD交于H,∵∠DCE=∠ACB=180°-∠A-∠B,∠A=70°,∠B=50°,∴∠DCE=60°,∴∠DHE=∠E+∠DCE=100°,∵∠DFE=∠D+∠DHF,∴∠D=∠DFE-∠DHF=120°-100°=20°,∴∠D从35°减小到20°,减小了15°,故答案为:减小,15.【考点】本题主要考查了三角形内角和定理,三角形外角的性质,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.三、解答题1、(1)三角形内角和定理(或三角形的内角和等于180°);(2)见解析;(3)70°【解析】【分析】(1)根据三角形内角和定理,即可求解;(2)根据三角形外角的性质可得∠1=∠2+∠A,∠3=∠4+∠B,从而得到∠1+∠3=∠2+∠A+∠4+∠B,即可求证;(3)由(2)可得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,从而得到∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,再由AE是∠CAD的平分线,BF是∠CBD的平分线,可得150°-∠C=2(110°-∠C),即可求解.(1)解:三角形内角和定理(或三角形的内角和等于180°)(2)证明:连接CD并延长至F,∵∠1和∠2分别是△ACD和△BCD的一个外角,∴∠1=∠2+∠A,∠3=∠4+∠B,∴∠1+∠3=∠2+∠A+∠4+∠B,即∠ADB=∠A+∠B+∠ACB;(3)解:由(2)得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,∵∠ADB=150°,∠AGB=110°,∴∠CAD+∠CBD+∠C=150°,∠CAE+∠CBF+∠C=110°,∴∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,∵AE是∠CAD的平分线,BF是∠CBD的平分线,∴∠CAD=2∠CAE,∠CBD=2∠CBF,∴∠CAD+∠CBD=2(∠CAE+∠CBF),∴150°-∠C=2(110°-∠C),解得:∠C=70°.【考点】本题主要考查了三角形的内角和定理,三角形外角的性质,有关角平分线的计算,熟练掌握三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.2、(1)见解析(2)见解析【解析】【分析】(1)先根据角平分线的定义求得∠ACB,进而说明∠ACB=∠3,然后运用同位角相等、两直线平行即可证明;(2)先根据两直线平行、内错角相等可得,进而得到∠BCD=∠2可得EF//DC,运用平行线的性质可得∠BFE=∠BDC,最后结合即可证明.(1)证明:∵CD平分,(已知)∴(角平分线的定义)又∵(已知)∴(等量代换)∴.(2)证明:由(1)知(已证)∴(两直线平行,内错角相等)又∵(已知)∴(等量代换)∴(同位角相等,两直线平行)∴(两直线平行,同位角相等)又∵(已知)∴(垂直的定义)∴(等量代换)∴(垂直的定义).【考点】本题主要考查了平行线的判定与性质、角平分线的定义等知识点,灵活运用平行线线的判定与性质成为解答本题的关键.3、见解析【解析】【分析】由BE平分∠ABC,可得∠1=∠3,再利用等量代换可得到一对内错角相等,即∠2=∠3,即可证明结论.【详解】证明:∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BC//DE.【考点】本题主要利用了角平分线的性质以及内错角相等、两直线平行等知识点,灵活运用平行线的判定定理成为解答本题的关键.4、证明见解析.【解析】【分析】先根据角平分线的定义可得,再根据平行线的性质可得,从而可得,然后根据平行线的判定即可得证.【详解】平分,平分,即.【考点】本题考查了平行线的判定与性质、角平分线的定义等知识点,熟记平行线的判定与性质是解题关键.5、证法1:平角等于180°;∠1+∠2+∠3=180°;证法二见解析【解析】【详解】试题分析:证法1:根据平角的定义得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根据三角形内角和定理和角的和差关系即可得到结论;证法2:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届舟山市重点中学九年级物理第一学期期中教学质量检测模拟试题含解析
- 2026届湖南省长沙市开福区周南实验中学物理九年级第一学期期末经典试题含解析
- 地维环氧地坪施工方案
- 2026届湖北省襄阳市襄城区九年级物理第一学期期末检测试题含解析
- 小口径钢管施工方案
- 市场灾后重建施工方案
- 水浸水泥楼板施工方案
- 地坪修复注浆施工方案
- 医用超声波清洗方案
- 商辅租赁合同
- 2025年电梯安全管理员试题复习带标准答案新版
- 2025年10月自考00226知识产权法真题及答案
- 粮食局考试试题及答案
- 2025年度上半年人口管理工作总结和下半年计划
- 关于推动党建引领经济高质量发展的调研报告
- 间歇性跛行的鉴别诊疗培训课件
- 盟史简介12.10.18课件
- 中医外科学课件章第十三章泌尿男性疾病
- GB/T 8491-2009高硅耐蚀铸铁件
- GB/T 5334-2021乘用车车轮弯曲和径向疲劳性能要求及试验方法
- GA/T 1356-2018国家标准GB/T 25724-2017符合性测试规范
评论
0/150
提交评论