




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版9年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图图案中,不是中心对称图形的是()A. B. C. D.2、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是()A.0.560 B.0.580 C.0.600 D.0.6203、如图,AB,CD是⊙O的弦,且,若,则的度数为()A.30° B.40° C.45° D.60°4、下列说法错误的是()A.必然事件发生的概率是1 B.不可能事件发生的概率为0C.随机事件发生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能发生5、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G,H三点刚好在金属框上,则该金属框的半径是()A. B. C. D.6、下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖C.想了解某市城镇居民人均年收入水平,宜采用抽样调查D.我区未来三天内肯定下雪7、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为()A.64° B.52° C.42° D.36°8、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是()A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、在菱形ABCD中,AB=6,E为AB的中点,连结AC,DE交于点F,连结BF.记∠ABC=α(0°<α<180°).(1)当α=60°时,则AF的长是_____;(2)当α在变化过程中,BF的取值范围是_____.2、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.3、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.4、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.5、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.6、有五张正面分别标有数字,,0,1,2的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,将该卡片放回洗匀后从中再任取一张,将该卡片上的数字记为,则为非负数的概率为________.7、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:(1)如图(1)已知,,点P在BC边所在的直线l上移动,小方发现AP的最小值是______;(2)如图(2)在直角中,,,,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是______.三、解答题(7小题,每小题0分,共计0分)1、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.(1)图1中的“弦图”的四个直角三角形组成的图形是对称图形(填“轴”或“中心”).(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.2、下面是“过圆外一点作圆的切线”的尺规作图过程.已知:⊙O和⊙O外一点P.求作:过点P的⊙O的切线.作法:如图,(1)连接OP;(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;(3)作直线MN,交OP于点C;(4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(5)作直线PA,PB.直线PA,PB即为所求作⊙O的切线完成如下证明:证明:连接OA,OB,∵OP是⊙C直径,点A在⊙C上∴∠OAP=90°(___________)(填推理的依据).∴OA⊥AP.又∵点A在⊙O上,∴直线PA是⊙O的切线(___________)(填推理的依据).同理可证直线PB是⊙O的切线.3、如图,内接于,BC是的直径,D是AC延长线上一点.(1)请用尺规完成基本作图:作出的角平分线交于点P.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,过点P作,垂足为E.则PE与有怎样的位置关系?请说明理由.4、如图,四边形ABCD是正方形.△ABE是等边三角形,M为对角线BD(不含B,D点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接EN,AM、CM.请判断线段AM和线段EN的数量关系,并说明理由.5、从2021年开始,重庆市新高考采用“”模式:“3”指全国统考科目,即:语文、数学、外语三个学科为必选科目;“1”为首选科目,即:物理、历史这2个学科中任选1科,且必须选1科;“2”为再选科目,即:化学、生物、思想政治、地理这4个学科中任选2科,且必须选2科.小红在高一上期期末结束后,需要选择高考科目.(1)小红在“首选科目”中,选择历史学科的概率是___________.(2)用列表法或画树状图法,求小红在“再选科目”中选择思想政治和地理这两门学科的概率.6、如图,在直角坐标平面内,已知点A的坐标(﹣2,0).(1)图中点B的坐标是______;(2)点B关于原点对称的点C的坐标是_____;点A关于y轴对称的点D的坐标是______;(3)四边形ABDC的面积是______;(4)在y轴上找一点F,使,那么点F的所有可能位置是______.7、如图,是的弦,是上的一点,且,于点,交于点.若的半径为6,求弦的长.-参考答案-一、单选题1、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C.【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.2、C【分析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:∵由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,∴这名球员在罚球线上投篮一次,投中的概率为0.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.3、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.【详解】解:∵,∴,∵,∴,故选:B.【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.4、D【分析】根据概率的意义分别判断后即可确定正确的选项.【详解】解:A.必然事件发生的概率是1,故该选项正确,不符合题意;B.不可能事件发生的概率是0,故该选项正确,不符合题意;C.随机事件发生的可能性越大,它的概率就越接近1,故该选项正确,不符合题意;D.概率很小的事件也可能发生,故该选项不正确,符合题意;故选D【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.5、A【分析】如图,记过A,G,H三点的圆为则是,的垂直平分线的交点,记的交点为的交点为延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过A,G,H三点的圆为则是,的垂直平分线的交点,记的交点为的交点为延长交于为的垂直平分线,结合正方形的性质可得:四边形为正方形,则设而AB=2,CD=3,EF=5,结合正方形的性质可得:而又而解得:故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G,H三点的圆的圆心是解本题的关键.6、C【分析】根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】A.“打开电视,正在播放《新闻联播》”是随机事件,故该选项不正确,不符合题意;B.某次抽奖活动中奖的概率为,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;C.想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;D.我区未来三天内不一定下雪,故该选项不正确,不符合题意;故选C【点睛】本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键.7、B【分析】先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.【详解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面内绕点A旋转到△AB′C′的位置,∴∠CAC′等于旋转角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋转角为52°.故选:B.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8、C【分析】过点A作AC⊥x轴于点C,设,则,根据勾股定理,可得,从而得到,进而得到∴,可得到点,再根据旋转的性质,即可求解.【详解】解:如图,过点A作AC⊥x轴于点C,设,则,∵,,∴,∵,,∴,解得:,∴,∴,∴点,∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.二、填空题1、2【分析】(1)证明是等边三角形,,进而即可求得;(2)过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,证明在半圆上,进而即可求得范围.【详解】(1)如图,四边形是菱形,是等边三角形是的中点即故答案为:2(2)如图,过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,四边形是菱形,在以为圆心长度为半径的圆上,又∠ABC=α(0°<α<180°)在半圆上,最小值为最大值为故答案为:【点睛】本题考查了相似三角形的性质与判定,点与圆的位置关系求最值问题,掌握相似三角形的性质与判定是解题的关键.2、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,∴当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交.故答案为:相切或相交.【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.3、65【分析】根据切线的性质得到OA⊥AP,根据直角三角形的两锐角互余计算,得到答案.【详解】解:∵PA是⊙O的切线,∴OA⊥AP,∴,∵∠APO=25°,∴,故答案为:65.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.4、45【分析】连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.【详解】解:连接OC,OD,∵直径AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵长为6π,∴阴影部分的面积为S阴影=S扇形OCD=,故答案为:45π.【点睛】本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.5、①②④【分析】连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.【详解】解:连接OM,∵PE为的切线,∴,∵,∴,∴,∵,,∴,即AM平分,故①正确;∵AB为的直径,∴,∵,,∴,∴,∴,故②正确;∵,∴,∵,∴,∴的长为,故③错误;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,设,则,∴,在中,,∴,∴,由①可得,,故④正确,故答案为:①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.6、【分析】求出为负数的事件个数,进而得出为非负数的事件个数,然后求解即可.【详解】解:两次取卡片共有种可能的事件;两次取得卡片数字乘积为负数的事件为等8种可能的事件∴为非负数共有种∴为非负数的概率为故答案为:.【点睛】本题考查了列举法求随机事件的概率.解题的关键在于求出事件的个数.7、105【分析】(1)如图,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD的最小值即可解决问题.【详解】解:如图作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为10.∴AP的最小值是10;(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC时,KD的值最小,∵,是等边三角形,∴,∴PC的最小值为5.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题.三、解答题1、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形.【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.2、直径所对的圆周角是直角经过半径的外端并且垂直于这条半径的直线是圆的切线【分析】连接OA,OB,根据圆周角定理可知∠OAP=90°,再依据切线的判定证明结论;【详解】证明:连接OA,OB,∵OP是⊙C直径,点A在⊙C上,∴∠OAP=90°(直径所对的圆周角是直角),∴OA⊥AP.又∵点A在⊙O上,∴直线PA是⊙O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),同理可证直线PB是⊙O的切线,故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线.3、(1)作图见解析(2)是的切线,理由见解析【分析】(1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点.(2)如图2所示,连接,由题意可知,,,,;在四边形中,,,求出,得出,由于是半径,故有是的切线.(1)解:如图1所示(2)解:是的切线.如图2所示,连接由题意可知,,,,在四边形中∵∴∴又∵是半径∴是的切线【点睛】本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点.解题的关键在于将知识综合灵活运用.4、AM=EN,理由见解析【分析】根据旋转性质和等边三角形的性质可证得∠ABM=∠EBN,BM=BN,AB=BE,根据全等三角形的判定证明△ABM≌△EBN即可得出结论.【详解】解:AM=EN,理由为:∵△ABE是等边三角形,∴AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,∵线段BM绕点B逆时针旋转60°得到BN,∴BM=BN,∠MBN=60°,即∠ABM+∠ABN=60°,∴∠ABM=∠EBN,在△ABM和△EBN中,,∴△ABM≌△EBN(SAS),∴AM=EN.【点睛】本题考查等边三角形的性质、旋转性质、全等三角形的判定与性质,熟练掌握用全等三角形证明线段相等是解答的关键.5、(1)(2)【分析】(1)根据概率的公式计算可得答案;(2)画树状图,共有12个等可能的结果,该同学恰好选中思想政治和地理化两科的结果有2个,再由概率公式求解即可.(1)解:选择物理、历史共有2中等可能结果,选择历史学科的结果有1种,所以选择历史学科的概率是;(2)假设A表示化学、B表示生物、C表示思想政治、D表示地理,画树状图如下图:共有12个等可能的结果,该同学恰好选中思想政治和地理的结果有2个,所以该同学恰好选中思想政治和地理的概率为.【点睛】此题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生心理健康教育 课件 第四章大学生学习心理
- 应急安全和防汛培训课件
- 2025石油石化职业技能鉴定考试练习题附参考答案详解【模拟题】
- 秋季腹泻病程发展规律与预后评估
- 新生儿苯丙酮尿症筛查与饮食管理
- 共建房屋合同(标准版)
- 儿童常见传染病预防与护理
- 2025辽宁省灯塔市中考数学复习提分资料及参考答案详解【完整版】
- 执业药师之《药事管理与法规》题库检测试题打印及答案详解【基础+提升】
- 2025自考公共课能力检测试卷【重点】附答案详解
- 青少年无人机课程大纲
- 2025-2030中国耳鼻喉外科手术导航系统行业市场发展趋势与前景展望战略研究报告
- 剪彩仪式方案超详细流程
- 2024年二级建造师考试《矿业工程管理与实物》真题及答案
- 人教版初中九年级化学上册第七单元课题1燃料的燃烧第2课时易燃物和易爆物的安全知识合理调控化学反应课件
- 发电厂继电保护培训课件
- 校企“双元”合作探索开发轨道交通新型活页式、工作手册式教材
- 肺癌全程管理
- 2024年考研英语核心词汇
- 信息系统定期安全检查检查表和安全检查报告
- 颅脑外伤患者的麻醉管理专家共识(2021版)
评论
0/150
提交评论