解析卷-沪科版9年级下册期末测试卷附答案详解【培优】_第1页
解析卷-沪科版9年级下册期末测试卷附答案详解【培优】_第2页
解析卷-沪科版9年级下册期末测试卷附答案详解【培优】_第3页
解析卷-沪科版9年级下册期末测试卷附答案详解【培优】_第4页
解析卷-沪科版9年级下册期末测试卷附答案详解【培优】_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版9年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,A,B,C是正方形网格中的三个格点,则是()A.优弧 B.劣弧 C.半圆 D.无法判断2、下列四个图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.3、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是()A. B.C. D.4、下列说法正确的是()A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.B.若AC、BD为菱形ABCD的对角线,则的概率为1.C.概率很小的事件不可能发生.D.通过少量重复试验,可以用频率估计概率.5、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为()A.10 B.12 C.15 D.186、下列图形中,是中心对称图形,但不是轴对称图形的是()A. B. C. D.7、的边经过圆心,与圆相切于点,若,则的大小等于()A. B. C. D.8、如图,是△ABC的外接圆,已知,则的大小为()A.55° B.60° C.65° D.75°第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、一个不透明的袋子中放有3个红球和5个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率为_____.2、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数).那么常数a的值等于________.3、如图,AB为的弦,半径于点C.若,,则的半径长为______.4、圆锥的底面直径是80cm,母线长90cm.它的侧面展开图的圆心角和圆锥的全面积依次是______.5、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有_____(填写所有正确结论的序号).6、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.7、如图,AB是半圆O的直径,AB=4,点C,D在半圆上,OC⊥AB,,点P是OC上的一个动点,则BP+DP的最小值为______.三、解答题(7小题,每小题0分,共计0分)1、如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的从左面看和从上面看的形状图;(用阴影表示)(2)已知每个小正方体的边长是2cm,求出这个几何体的表面积是多少?2、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:(1)这次活动共调查了______人,并补充完整条形统计图;(2)在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为______;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表的方法,求出两人恰好选择同一种支付方式的概率.3、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OM、OP在直线AB上,其中.(1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP在的内部且平分,此时三角板OPQ旋转的角度为______度;(2)三角板OPQ在绕点O按逆时针方向旋转时,若OP在的内部.试探究与之间满足什么等量关系,并说明理由;(3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OC、OD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OC与OD第二次相遇前,当时,直接写出旋转时间t的值.4、对于平面直角坐标系xOy中的图形M,N,给出如下定义:若图形M和图形N有且只有一个公共点P,则称点P是图形M和图形N的“关联点”.已知点,,,.(1)直线l经过点A,的半径为2,在点A,C,D中,直线l和的“关联点”是______;(2)G为线段OA中点,Q为线段DG上一点(不与点D,G重合),若和有“关联点”,求半径r的取值范围;(3)的圆心为点,半径为t,直线m过点A且不与x轴重合.若和直线m的“关联点”在直线上,请直接写出b的取值范围.5、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点A作AD∥OC,交BC的延长线于D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为2,∠OCB=75°,求△ABC边AB的长.6、作图题(1)由大小相同的小立方块搭成的几何体如下图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.7、如图,AB是⊙O的直径,点D,E在⊙O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C.(1)求证:CD是⊙O的切线.(2)若,求阴影部分的面积.-参考答案-一、单选题1、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.2、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、A【分析】设正六边形的边长为1,当在上时,过作于而求解此时的函数解析式,当在上时,延长交于点过作于并求解此时的函数解析式,当在上时,连接并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.【详解】解:设正六边形的边长为1,当在上时,过作于而当在上时,延长交于点过作于同理:则为等边三角形,当在上时,连接由正六边形的性质可得:由正六边形的对称性可得:而由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.4、B【分析】概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.【详解】A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则AC⊥BD的概率为1是正确的,故B正确,符合题意;C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.故选B【点睛】本题考查概率的命题真假,准确理解事务发生的概率是本题关键.5、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可.【详解】解:由题意可得,,解得,a=15.经检验,a=15是原方程的解故选:C.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据白球的频率得到相应的等量关系.6、B【分析】根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B.【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.7、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接,,,与圆相切于点,,,故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.8、C【分析】由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.【详解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故选:C.【点睛】此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.二、填空题1、【分析】让红球的个数除以球的总数即为摸到红球的概率.【详解】解:∵红球的个数为3个,球的总数为3+5=8(个),∴摸到红球的概率为,故答案为:.【点睛】本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.2、5【分析】直接利用直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:根据直角三角形斜边上的中线等于斜边的一半,即可知道点到点A,B,C的距离相等,如下图:,,故答案是:5.【点睛】本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.3、5【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,再连接OA,在Rt△OAC中利用勾股定理求出r的值即可.【详解】解:∵⊙O的弦AB=8,半径OD⊥AB,∴AC=AB=×8=4,设⊙O的半径为r,则OC=r-CD=r-2,连接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.4、160°,5200【分析】由题意知,圆锥的展开图扇形的r半径为90cm,弧长l为.代入扇形弧长公式求解圆心角;代入扇形面积公式求出圆锥侧面积,然后加上底面面积即可求出全面积.【详解】解:圆锥的展开图扇形的r半径为90cm,弧长l为∵∴解得∵∴故答案为:160°,.【点睛】本题考查了扇形的圆心角与面积.解题的关键在于运用扇形的弧长与面积公式进行求解.难点在于求出公式中的未知量.5、②③④【分析】根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.【详解】∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,∴∠CMH=90°,∵四边形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可证,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,无法确定HD=2BG,故①错误;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正确;∵△CMH≌△CDH,BD是正方形的对角线,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根据对角互补的四边形内接于圆,∴H,F,E,G四点在同一个圆上,故③正确;∵正方形ABCD的边长为1,∴=1=,∠GAH=90°,AC=取GH的中点P,连接PA,∴GH=2PA,∴=,∴当PA取最小值时,有最大值,连接PC,AC,则PA+PC≥AC,∴PA≥AC-PC,∴当PC最大时,PA最小,∵直径是圆中最大的弦,∴PC=1时,PA最小,∴当A,P,C三点共线时,且PC最大时,PA最小,∴PA=-1,∴最大值为:1-(-1)=2-,∴四边形CGAH面积的最大值为2,∴④正确;故答案为:②③④.【点睛】本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.6、①②④【分析】连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.【详解】解:连接OM,∵PE为的切线,∴,∵,∴,∴,∵,,∴,即AM平分,故①正确;∵AB为的直径,∴,∵,,∴,∴,∴,故②正确;∵,∴,∵,∴,∴的长为,故③错误;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,设,则,∴,在中,,∴,∴,由①可得,,故④正确,故答案为:①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7、【分析】如图,连接AD,PA,PD,OD.首先证明PA=PB,再根据PD+PB=PD+PA≥AD,求出AD即可解决问题.【详解】解:如图,连接AD,PA,PD,OD.∵OC⊥AB,OA=OB,∴PA=PB,∠COB=90°,∵,∴∠DOB=×90°=60°,∵OD=OB,∴△OBD是等边三角形,∴∠ABD=60°∵AB是直径,∴∠ADB=90°,∴AD=AB•sin∠ABD=2,∵PB+PD=PA+PD≥AD,∴PD+PB≥2,∴PD+PB的最小值为2,故答案为:2.【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会用转化的思想思考问题.三、解答题1、(1)见解析(2)152cm2.【分析】(1)左视图3列,每列小正方形数目分别为3,2,1;俯视图有3列,每行小正方形数目分别为3,2,1,;(2)先数出各个面小正方形的个数,再乘每个小正方形的面积可计算出表面积.(1)如图所示:(2)(2×2)×(6×6+2)=4×38=152(cm2).故这个几何体的表面积是152cm2.【点睛】本题考查作图-三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.2、(1)200;补图见解析;(2)81°;(3)【分析】(1)根据使用支付方式为银行卡的占比为15%,人数为30人即可求得总人数,根据微信支付所占的百分比为乘以总人数即可求得,根据总人数减去微信支付,银行卡,现金,其他方式支付的人数即可求得支付宝支付的人数;(2)先求得支付宝支付的人数所占比乘以360°即可求得扇形圆心角的度数;(3)根据列表法求概率即可.【详解】解:(1)(人)故答案为:200其中使用微信支付的有:(人)使用支付宝支付的有:(人)(2)故答案为:81°(3)将微信记为A,支付宝记为B,银行卡记为C,列表格如下:ABCABC共有9种等可能性的结果,其中两人恰好选择同一种支付方式的结果有3种,则P(两人恰好选择同一种支付方式)【点睛】本题考查了扇形统计图与条形统计图信息关联,求条形统计图某项数据,求扇形统计图圆心角,列表法求概率,掌握以上知识是解题的关键.3、(1)135°(2)∠MOP-∠NOQ=30°,理由见解析(3)s或s.【分析】(1)先根据OP平分得到∠PON,然后求出∠BOP即可;(2)先根据题意可得∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,然后作差即可;(3)先求出旋转前OC、OD的夹角,然后再求出OC与OD第一次和第二次相遇所需要的时间,再设在OC与OD第二次相遇前,当时,需要旋转时间为t,再分OE在OC的左侧和OE在OC的右侧两种情况解答即可.(1)解:∵OP平分∠MON∴∠PON=∠MON=45°∴三角板OPQ旋转的角:∠BOP=∠PON+∠NOB=135°.故答案是135°(2)解:∠MOP-∠NOQ=30°,理由如下:∵∠MON=90°,∠POQ=60°∴∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,∴∠MOP-∠NOQ=90°-∠POQ-(60°-∠POQ)=30°.(3)解:∵射线OC平分,射线OD平分∴∠NOC=45°,∠POD=30°∴选择前OC与OD的夹角为∠COD=∠NOC+∠NOP+∠POD=165°∴OC与OD第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB旋转的角度为33×5°=165°∴此时OC与OE的夹角165-(180-45-2×33)=96°OC与OD第二次相遇需要时间360°÷(3°+2°)=72秒设在OC与OD第二次相遇前,当时,需要旋转时间为t①当OE在OC的左侧时,有(5°-2°)t=96°-13°,解得:t=s②当OE在OC的右侧时,有(5°-2°)t=96°+13°,解得:t=s然后,①②都是每隔360÷(5°-2°)=120秒,出现一次这种现象∵C、D第二次相遇需要时间72秒∴在OC与OD第二次相遇前,当时,、旋转时间t的值为s或s.【点睛】本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键.4、(1)C(2)(3)【分析】(1)作出图形,根据切线的定义结合“关联点”即可求解;(2)根据题意,为等边三角形,则仅与相切时,和有“关联点”,进而求得半径r的取值范围;(3)根据关联点以及切线的性质,直径所对的角是直角,找到点的运动轨迹是以为圆心半径为的半圆在轴上的部分,进而即可求得的值.(1)解:如图,,,,,,轴,.的半径为2,直线与相切直线l和的“关联点”是点故答案为:(2)如图,根据题意与有“关联点”,则与相切,且与相离,是等边三角形为的中点,则当与相切时,则点为的内心半径r的取值范围为:(3)如图,设和直线m的“关联点”为,,交轴于点,是的切线,的圆心为点,半径为t,轴是的切线点的运动轨迹是以为圆心半径为的半圆在轴上的部分,则点,在直线上,当直线与相切时,即当点与点重合时,最大,此时与轴交于点,当点运动到点时,则过点,则解得b的取值范围为:【点睛】本题考查了切线的性质与判定,切线长定理,勾股定理,一次函数与坐标轴交点问题,等边三角形的性质,等边三角形的内心的性质,掌握以上知识是解题的关键.5、(1)见解析;(2)【分析】(1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;(2)连接OB,过点O作OE⊥AB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB=30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,则AB=.【详解】解:(1)如图所示,连接OA,∵∠CBA=45°,∴∠COA=90°,∵AD∥OC,∴∠OAD+∠COA=180°,∴∠OAD=90°,又∵点A在圆O上,∴AD是⊙O的切线;(2)连接OB,过点O作OE⊥AB,垂足为E,∵∠OCB=75°,OB=OC,∴∠OCB=∠OBC=75°,∴∠COB=180°-∠OCB-∠OBC=30°,由(1)证可得∠AOC=90°,∴∠AOB=120°,∵OA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论