考点解析广东省高州市中考数学真题分类(平行线的证明)汇编同步训练试题_第1页
考点解析广东省高州市中考数学真题分类(平行线的证明)汇编同步训练试题_第2页
考点解析广东省高州市中考数学真题分类(平行线的证明)汇编同步训练试题_第3页
考点解析广东省高州市中考数学真题分类(平行线的证明)汇编同步训练试题_第4页
考点解析广东省高州市中考数学真题分类(平行线的证明)汇编同步训练试题_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省高州市中考数学真题分类(平行线的证明)汇编同步训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠32、对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=-3,b=2 C.a=3,b=-1 D.a=-1,b=33、如下图,在下列条件中,能判定AB//CD的是(

)A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠44、如图所示,下列推理及括号中所注明的推理依据错误的是(

)A.,(内错角相等,两直线平行)B.,(两直线平行,同旁内角互补)C.,(两直线平行,同旁内角互补)D.,(同位角相等,两直线平行)5、如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠B=25°,∠1=70°,则∠C的大小为()A.40° B.50° C.75° D.85°6、如图,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,则∠AEB的度数为()A.100° B.110° C.120° D.130°7、在中,若一个内角等于另外两个角的差,则(

)A.必有一个角等于 B.必有一个角等于C.必有一个角等于 D.必有一个角等于8、如图,直线a、b被直线c所截.若∠1=55°,则∠2的度数是(

)时能判定a∥b.A.35° B.45° C.125° D.145°第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、命题“互为相反数的两个数的和为零”的条件是______,结论是______.2、如图,在中,,,,则x=______.3、如图,在ΔABC中,E、F分别是AB、AC上的两点,∠1+∠2=235°,则∠A=____度.4、一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=_____度.5、如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于点D1,∠ABD1与∠ACD1的角平分线交于点D2,则∠BD2C的度数是_____.6、如图,将长方形纸片分别沿,折叠,点,恰好重合于点,,则__________.7、如图,给出下列条件:①;②;③;④;⑤.其中,一定能判定∥的条件有_____________(填写所有正确的序号).三、解答题(7小题,每小题10分,共计70分)1、如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.2、已知:如图1,,BD平分,,过点A作直线,延长CD交MN于点E(1)当时,的度数为______.(2)如图2,当时,求的度数;(3)设,用含x的代数式表示的度数.3、已知:如图,.求证:.分析:如图,欲证,只要证______.证明:,(已知)又,(

)__________.(

).(__________,____________)4、在①DE=BC,②,③AE=AC这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.问题:如图,AC平分,D是AC上的一点,.若______,求证:.5、如图,点A在MN上,点B在PQ上,连接AB,过点A作交PQ于点C,过点B作BD平分∠ABC交AC于点D,且.(1)求证:;(2)若,求∠ADB的度数.6、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.(1)求证:AB//CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.7、如图,AB//CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD//BC.-参考答案-一、单选题1、D【解析】【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可.【详解】由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b,故选D.【考点】本题主要考查了平行线的判定,熟记平行线的判定方法是解题的关键.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.2、B【解析】【详解】试题解析:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且-3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>-1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且-1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.考点:命题与定理.3、C【解析】【详解】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故选C.4、C【解析】【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【详解】解:.,(内错角相等,两直线平行),正确;.,(两直线平行,同旁内角互补),正确;.,(两直线平行,同旁内角互补),故选项错误;.,(同位角相等,两直线平行),正确;故选:C.【考点】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.5、B【解析】【分析】根据三角形内角和定理可求出的大小,再根据三角形外角性质即可求出的大小.【详解】∵,,∴,∴.故选B.【考点】本题考查三角形内角和定理和三角形外角的性质.利用数形结合的思想是解答本题的关键.6、B【解析】【分析】根据两直线平行,可得∠BAD=∠ABE=20°,因为BE平分∠ABC,所以∠ABE=∠EBC=20°,所以得到∠ABC=40°,从而求出∠EAB=50°,根据三角形内角和即可得到∠AEB的度数.【详解】解:∵BE∥AD∴∠BAD=∠ABE=20°∵BE平分∠ABC∴∠ABE=∠EBC=20°∴∠ABC=40°∵∠C=90°∴∠EAB=50°∴∠AEB=180°-∠EAB-∠ABE=180°-50°-20°=110°故选B.【考点】本题考查了平行线的性质,角平分线和三角形内角和,能够找出内错角以及熟悉三角形内角和为180°是解决本题的关键.7、D【解析】【分析】先设三角形的两个内角分别为x,y,则可得第三个角(180°-x-y),再分三种情况讨论,即可得到答案.【详解】设三角形的一个内角为x,另一个角为y,则第三个角为(180°-x-y),则有三种情况:①②③综上所述,必有一个角等于90°故选D.【考点】本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.8、C【解析】【分析】根据内错角相等,两直线平行的判定定理进行解答.【详解】解:当∠1=∠3时,a∥b,∴∠3=∠1=55°,∵∠2+∠3=180°,∴∠2=125°,∴当∠2=125°时,a∥b,故选:C.【考点】本题考查了平行线的性质,熟记“内错角相等,两直线平行”是解题的关键.二、填空题1、

互为相反数的两个数相加

和为零【解析】【分析】根据命题的组成,把命题写成“如果……那么……”形式,“如果”后面的是条件,“那么”后面的是结论,就可以得到命题的条件和结论.【详解】解:把命题“互为相反数的两个数的和为零”写成“如果……那么……”形式,即“如果互为相反数的两个数相加,那么和为零”,条件:互为相反数的两个数相加,结论:和为零.【考点】本题考查了命题与定理的知识点,把命题写成“如果……那么……”形式,了解“如果”后面的是条件,“那么”后面的是结论是解题的关键.2、130【解析】【分析】由可得,再由,即可求解;【详解】解:∵,,∴∵,∴,∴∴故答案为:130.【考点】本题主要考查三角形的内角和定理,掌握三角形的内角和定理并灵活应用是解本题的关键.3、55【解析】【分析】根据三角形内角和定理可知,要求∠A只要求出∠AEF+∠AFE的度数即可.【详解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°−235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形内角和定理)∴∠A=180°−125°=55°,故答案为:55°【考点】本题是有关三角形角的计算问题.主要考察三角形内角和定理的应用和计算,找到∠A所在的三角形是关键.4、120【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=150°,求得答案.【详解】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.【考点】此题考查了平行线的性质,解题的关键是注意掌握辅助线的作法,注意数形结合思想的应用.5、84°##84度【解析】【分析】利用角平分线的定义∠ABD2=∠ABD1=,∠ACD2=∠ACD1=,求出∠CBD2=,,再根据三角形的内角和定理以及,再把∠A代入即可求∠BD2C的度数.【详解】解:∵BD1、CD1分别平分∠ABC和∠ACB,∴∠D1BA=∠D1BC=∠ABC,∠D1CA=∠D1CB=∠ACB,∵BD2、CD2分别平分∠ABD1和∠ACD1,∴∠ABD2=∠ABD1=,∠ACD2=∠ACD1=,∴∠CBD2=,∴,∴∠BD2C=180°-(∠D2BC+∠D2CB)=180°-(∠ABC+∠ABC),当∠A=52°时,∠BD2C=180°-×(180°-52°),=84°.故答案为84°.【考点】此题考查三角形内角和定理,解题关键在于利用角平分线的定义进行有关计算.6、##54度【解析】【分析】根据翻折可得∠MAB=∠BAP,∠NAC=∠PAC,得∠MAB+∠NAC=90°,再由,即可解决问题.【详解】解:根据翻折可知:∠MAB=∠BAP,∠NAC=∠PAC,∴∠BAC=∠PAB+∠PAC180°=90°,∴∠MAB+∠NAC=90°,∵∠NAC=∠MAB,∴∠NAC+∠NAC=90°,∴∠NAC=54°.故答案为:54°.【考点】本题主要考查翻折变换,熟练掌握和应用翻折的性质是解题的关键.7、①③④【解析】【分析】根据平行线的判定方法对各小题判断即可解答.【详解】①∵,∴∥(同旁内角互补,两直线平行),正确;②∵,∴∥,错误;③∵,∴∥(内错角相等,两直线平行),正确;④∵,∴∥(同位角相等,两直线平行),正确;⑤不能证明∥,错误,故答案为:①③④.【考点】本题考查了平行线的判定,熟练掌握平行线的判定方法是解答的关键.三、解答题1、(1)65°;(2)25°.【解析】【分析】(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据直角三角形两锐角互余的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.【详解】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.【考点】本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.2、(1)(2)(3)【解析】【分析】(1)根据题意证明,进而可得,根据,即可求解.继而可得,即可求得;(2)根据全等三角形的性质可得,根据三角形内角和定理可得,进而根据即可求解.(3)根据(1)(2)的方法分类讨论即可求解.(1)解:BD平分,,,,,,,,,,,故答案为:,(2)解:由(1)可知,,,,,,,(3)解:设,,,,,当点在点的左侧时,,当点在点的右侧时,,.【考点】本题考查了全等三角形的性质与判定,三角形的内角和定理的应用,掌握全等三角形的性质与判定是解题的关键.3、;对顶角相等;;等量代换;同位角相等,两直线平行.【解析】【分析】根据等量代换和同位角相等,两直线平行即可得出结果.【详解】分析:如图,欲证,只要证.证明:,(已知)又,(对顶角相等).(等量代换).(同位角相等,两直线平行)【考点】本题主要考查平行线的判定,属于基础题,掌握平行线的判定定理是解题的关键.4、证明见解析【解析】【分析】选②,根据角平分线的性质可得∠EAD=∠BAC.由三角形的内角和定理可得,,即可求解,若选③,证明,即可求解.【详解】若选②;证明:∵AC平分∠BAE,∴∠EAD=∠BAC.∵∠E=∠C,∴.∵,.∴∠ADE=∠ABC.若选③,证明:∵AC平分∠BAE,∴.在△ABC和△ADE中,∴.∴.【考点】本题考查了三角形的内角和定理,三角形求得的性质与判定,综合运用以上知识是解题的关键.5、(1)见解析(2)【解析】【分析】(1)根据,利用三角形内角和.根据,得出,根据平行线判定定理即可得出结论;(2)根据,得出方程,解方程求出,根据BD平分,求出,再根据余角性质求解即可.(1)证明:∵,∴,∴.∵,∴,∴;(2)解:∵,∴,∴,∴∵BD平分,∴,∵,∴.【考点】本题考查平行线判定,三角形内角和,等角的余角性质,一元一次方程,角平分线定义,掌握平行线判定,三角形内角和,等角的余角性质,一元一次方程,角平分线定义是解题关键.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论