基础强化河南省长葛市中考数学真题分类(一次函数)汇编定向攻克练习题_第1页
基础强化河南省长葛市中考数学真题分类(一次函数)汇编定向攻克练习题_第2页
基础强化河南省长葛市中考数学真题分类(一次函数)汇编定向攻克练习题_第3页
基础强化河南省长葛市中考数学真题分类(一次函数)汇编定向攻克练习题_第4页
基础强化河南省长葛市中考数学真题分类(一次函数)汇编定向攻克练习题_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省长葛市中考数学真题分类(一次函数)汇编定向攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、一次函数的图象与轴交点的坐标是(

)A.(0,2) B.(0,-2) C.(2,0) D.(-2,0)2、已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣73、为了让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,打开进水口注水时,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示,下列说法错误的是:()A.该游泳池内开始注水时已经蓄水100m3B.每小时可注水190m3C.注水2小时,游泳池的蓄水量为380m3D.注水2小时,还需注水100m3,可将游泳池注满4、小明观看了《中国诗词大会》第三期,主题为“人生自有诗意”,受此启发根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”,如图用y轴表示父亲与儿子行进中离家的距离,用x轴表示父亲离家的时间,那么下面图象与上述诗的含义大致相吻合的是()A. B.C. D.5、函数中自变量x的取值范围是(

)A.x≥2 B.x>﹣2 C.x≤2 D.x<26、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是()A.小车在下滑过程中下滑时间t和支撑物的高度h之间的关系B.三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系C.骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系D.一个正数x的平方根是y,y随着这个数x的变化而变化,y与x之间的关系7、如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.8、为积极响应振兴乡村的号召,某工作队步行前往某乡村开展入户调查.队员们先匀速步行一段时间,途中休息几分钟后加快了步行速度,最终按原计划时间到达目的地.设行进时间为t(单位:),行进的路程为x(单位:m),则能近似刻画x与t之间的函数关系的大致图象是(

)A. B.C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,根据图象有以下四个判断:①乙队率先到达终点;②甲队比乙队多走了126米;③在47.8秒时,两队所走路程相等;④从出发到13.7秒的时间段内,甲队的速度比乙队的慢.所有正确判断的序号是_____.2、函数y=中,自变量x的取值范围是_____________.3、在一次函数中,的值随着值的增大而增大,则点P(3,)在第_______象限.4、若点在直线上,当时,,则这条直线的函数表达式是________.5、在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,已知点,点是轴正半轴上的点,记内部(不包括边界)的整点个数为,当时,点的横坐标的取值范围是____.6、按如图所示的程序计算,当输入时,则输出的结果为______.7、设点(﹣1,m)和点(,n)是直线(0<k<1)上的两个点,则m、n的大小关系为_________.三、解答题(7小题,每小题10分,共计70分)1、小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.2、甲乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km?3、在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓,超市离学生公寓,小琪从学生公寓出发,匀速步行了到阅览室;在阅览室停留后,匀速步行了到超市;在超市停留后,匀速骑行了返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离与离开学生公寓的时间之间的对应关系.请根据相关信息,解答下列问题:(1)填表:离开学生公寓的时间/585087112离学生公寓的距离/0.51.6(2)填空:①阅览室到超市的距离为___________;②小琪从超市返回学生公寓的速度为___________;③当小琪离学生公寓的距离为时,他离开学生公寓的时间为___________.(3)当时,请直接写出y关于x的函数解析式.4、碑林书法社小组用的书法练习纸(毛边纸可以到甲商店购买,也可以到乙商店购买已知两商店的标价都是每刀20元(每刀100张),但甲商店的优惠条件是:若购买不超过10刀,则按标价买,购买10以上,从第11刀开始按标价的七折卖;乙商店的优惠条件是:购买一只9元的毛笔,从第一刀开始按标价的八五折卖.购买刀数为(刀),在甲商店购买所需费用为元,在乙商店购买所需费用为元.(1)写出、与之间的函数关系式.(2)求在乙商店购买所需总费用小于甲商店购买所需总费用时的取值范围.5、由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米?(2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?6、如图是小李骑自行车离家的距离s(km)与时间t(h)之间的关系.(1)在这个变化过程中自变量__________,因变量是__________,(2)小李__________时到达离家最远的地方?此时离家________km;(3)分别写出在1<t<2时和2<t<4时小李骑自行车的速度为______km/h和______km/h.(4)小李______时与家相距20km.7、已知直线l1与x轴交于点A(8,0),与y轴交于点B(0,6),将直线l1向下平移4个单位长度后得到直线l2,直线l2与x轴交于点C,与y轴交于点D.(1)求出直线l1的函数表达式.(2)直线l2的函数表达式是,△ODC的面积为.-参考答案-一、单选题1、D【解析】【分析】计算函数值为0所对应的自变量的取值即可.【详解】解:当y=0时,x+2=0,解得x=-2,所以一次函数的图象与x轴的交点坐标为(-2,0).故选:D.【考点】本题考查了一次函数图象与x轴的交点:求出函数值为0时的自变量的值即可得到一次函数与x轴的交点坐标.2、B【解析】【详解】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.【详解】∵一次函数y=﹣2x+3中k=﹣2<0,∴y随x的增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3,故选B.【考点】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.3、B【解析】【分析】根据图象中的数据逐项判断即可解答.【详解】解:A、由图象可知,当t=0时,y=100,即该游泳池内开始注水时已经蓄水100m3,正确,故选项A不符合题意;B、由(380-100)÷2=140(m3),即每小时可注水140m3,故选项B错误,符合题意;C、由图可知,注水2小时,游泳池的蓄水量为380m3,正确,故选项C不符合题意;D、由图象可知,480-380=100(m3),即注水2小时,还需注水100m3,可将游泳池注满,正确,不符合题意,故选:B.【考点】本题考查一次函数的应用,能从图象中获取有效信息是解答的关键.4、D【解析】【分析】开始时,父亲离家的距离越来越远,而儿子离家的距离越来越近,车站在两人出发点之间,而父亲早到,两人停一段时间以后,两人一起回家,则离家的距离与离家时间的关系相同.【详解】解:开始时,父亲离家的距离越来越远,而儿子离家的距离越来越近,车站在两人出发点之间,而父亲早到,故A、B、C不符合题意;两人停一段时间以后,两人一起回家,则离家的距离与离家时间的关系相同,则选项D符合题意.故选D.【考点】本题主要考查了函数图象的应用,理解函数图象的横轴和纵轴表示的量并实际情况来判断函数图象是解答本题的关键.5、C【解析】【分析】根据二次根式有意义的条件是被开方数是非负数,建立不等式求解即可.【详解】解:由题意得:﹣2x+4≥0,解得:x≤2,故选:C.【考点】本题考查了二次根式有意义的条件,解不等式,掌握二次根式有意义的条件是解题的关键.6、D【解析】【分析】根据函数的定义:在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,y是x的函数,由此进行逐一判断即可【详解】解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;D、∵一个正数x的平方根是y,∴,对于每一个确定的x,y都有两个值与之对应,不满足函数的关系,故符合题意;故选D.【考点】本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.7、A【解析】【详解】分析:根据定义可将函数进行化简.详解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选A.点睛:本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.8、C【解析】【分析】根据休息后的速度比休息前的速度快,路程变化快一点,图象相对陡一点,休息时路程不变,进而可作出判断.【详解】解:根据题意,休息后的速度比休息前的速度快,路程变化快一点,图象相对陡一点,休息时路程不变,四个选项中只有C选项符合题意,故选:C.【考点】本题考查了函数的图象,理解题意,找到休息前后路程的的变化快慢是解答的关键.二、填空题1、③④【解析】【分析】根据函数图象所给的信息,逐一判断.【详解】由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,故①错误;由函数图象可知,甲、乙两队都走了300米,路程相同,故②错误;由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,故③正确;由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,故④正确.∴正确判断的有:③④.故答案为:③④.【考点】本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.2、x≥-3且x≠1【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可知:x+3≥且x-1≠0,解得自变量x的取值范围.【详解】解:根据题意得:x+3≥0且x-1≠0,解得:x≥-3且x≠1.故答案为:x≥-3且x≠1【考点】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3、一【解析】【分析】先根据一次函数中,函数y的值随x值的增大而增大判断出k的符号,求出k的取值范围即可判断出P点所在象限.【详解】解:∵正一次函数中,函数y的值随x值的增大而增大,∴k>0,∴点在第一象限.故答案为:一【考点】本题考查的是一次函数增减性质与系数k的关系,判断点所处的象限,根据题意判断出k的符号是解答此题的关键.4、y=x或y=-x【解析】【分析】分k>0和k<0两种情况,由当-1≤m≤1时,-1≤n≤1,推出点的坐标,再利用待定系数法求表达式即可.【详解】当k>0时,y随x的增大而增大,∵点A(m,n)在直线y=kx(k≠0)上,-1≤m≤1时,-1≤n≤1,∴点(−1,−1)或(1,1)都在直线上,∴k=1,∴y=x,当k<0时,y随x的增大而减小,∵点A(m,n)在直线y=kx(k≠0)上,-1≤m≤1时,-1≤n≤1,∴点(-1,1)或(1,-1)都在直线上,∴k=-1,∴y=-x,综上所述,表达式为y=x或y=-x.故答案为:y=x或y=-x.【考点】本题考查了待定系数法求正比例函数解析式及一次函数图象上点的坐标特征,熟练掌握一次函数的性质是解题的关键.5、【解析】【分析】画出示意图,分别求出当直线AB过点(2,1)时和当直线AB′过点(4,0)时,的值,进而即可求解.【详解】如图所示:当直线AB过点(2,1)时,内部有2个整数点,设直线AB的解析式为y=kx+b,把,(2,1)代入上式,得:,解得:,∴直线AB解析式为:y=x+4,把y=0代入y=x+4,得:0=x+4,解得:x=;当直线AB′过点(4,0)时,内部有3个整数点,∴内部(不包括边界)的整点个数为,当时,点的横坐标的取值范围是:.故答案是:.【考点】本题主要考查一次函数的应用,掌握待定系数法以及数形结合的思想方法,是解题的关键.6、1【解析】【分析】根据x的值选择函数关系式然后进行计算即可得解.【详解】解:当x=3时,y=-x+4=-3+4=1,故答案为:1.【考点】本题考查了函数值的求解,关键在于准确选择函数关系式.7、m>n【解析】【分析】根据直线解析式判断其增减性,然后利用增减性比较大小即可.【详解】解:∵0<k<1,∴直线中,,∴y随x的增大而减小,∵﹣1<,∴m>n.故答案为:m>n.【考点】本题考查一次函数的性质,掌握一次函数的增减性,并熟练利用增减性比较函数值的大小是解题关键.三、解答题1、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤;(3)两人相遇时间为第8分钟.【解析】【分析】(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;(3)两人相遇实际上是函数图象求交点.【详解】解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折现O﹣A﹣B为小玲路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为(4000-2000)÷(30-10)=100m/s(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x,自变量x的范围为0≤x≤,(3)由图象可知,两人相遇是在小玲改变速度之前,∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.故答案为(1)4000,100;(2)y=4000﹣300x,0≤x≤;(3)第8分钟.【考点】本题考查了一次函数的应用,解决本题的关键是能从函数的图象中获取相关信息.2、(1)m=1,a=40;(2)y=;(3)当乙车行驶或小时,两车恰好相距50km.【解析】【详解】试题分析:(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a的值和m的值;(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;(3)先求出乙车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.试题解析:(1)由图知1.5-m=0.5

∴m=1=

∴a=40(2)休息前,图象过(1,40),所求函数为y=40x(0≤x≤1)休息时,所求函数为y=40(1<x≤1.5)休息后,图象过(1.5,40),(3.5,120)将坐标代入y=kx+b解得所求函数为y=40x-20(1.5<x≤7)(3)设乙车行驶xh时,两车恰好相距50km相遇前,40(x+2-0.5)-80x=50解得x=0.25h相遇后,80x-40(x+2-0.5)=50解得x=2.75h答:乙车行驶0.25h或2.75h时,两车恰好相距50km3、(1)0.8,1.2,2(2)①0.8;②0.25;③10或116(3)当时,;当时,;当时,【解析】【分析】(1)根据题意和函数图象,可以将表格补充完整;(2)根据函数图象中的数据,可以将各个小题中的空补充完整;(3)根据(2)中的结果和函数图象中的数据,可以写出当时,y关于x的函数解析式.(1)由图象可得,在前12分钟的速度为:1.2÷12=0.1km/min,故当x=8时,离学生公寓的距离为8×0.1=0.8;在时,离学生公寓的距离不变,都是1.2km故当x=50时,距离不变,都是1.2km;在时,离学生公寓的距离不变,都是2km,所以,当x=112时,离学生公寓的距离为2km故填表为:离开学生公寓的时间/585087112离学生公寓的距离/0.50.81.21.62(2)①阅览室到超市的距离为2-1.2=0.8;②小琪从超市返回学生公寓的速度为:2÷(120-112)=0.25;③分两种情形:当小琪离开学生公寓,与学生公寓的距离为时,他离开学生公寓的时间为:1÷0.1=10;当小琪返回与学生公寓的距离为时,他离开学生公寓的时间为:112+(2-1)÷{2÷(120-112)}=112+4=116min;故答案为:①0.8;②0.25;③10或116(3)当时,设直线解析式为y=kx,把(12,1.2)代入得,12k=1.2,解得,k=0.1∴;当时,;当时,设直线解析式为,把(82,1.2),(92,2)代入得,解得,∴,由上可得,当时,y关于x的函数解析式为.【考点】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.4、(1),;(2)【解析】【分析】(1)根据甲乙两个商店的优惠方案直接得出关系式;(2)由于甲商店的费用与x的函数关系是分段函数,因此要分别进行考虑,才能得到自变量的取值范围.【详解】解:(1)当时,则y1=20x;当x>10时,y1=20×10+(x-10)×20×0.7=14x+60,∴,,∴,;(2)①当0<x≤10时,y2<y1,即:9+17x<20x,解得:x>3,此时自变量的取值范围为:3<x≤10;②当x>10时,y2<y1,即:9+17x<14x+60,解得:x<17,此时自变量的取值范围为:10<x<17;答:在乙商店购买所需总费用小于甲商店购买所需总费用时x的取值范围为:3<x<17.【考点】考查一次函数的性质、分段函数关系式以及分段函数的自变量的取值范围的确定等知识,在乙商店购买所需总费用小于甲商店购买所需总费,由于甲店是分段函数,故在解题时分类讨论确定.5、(1)水库原蓄水量为1000万立方米,持续干旱10天后,蓄水量为800万立方米;(2)持续干旱30天后将发出严重干旱警报;(3)持续干旱50天后水库将干涸.【解析】【分析】(1)原蓄水量即t=0时v的值,t=50时,v=0,得v与t的函数关系,持续干旱10天后的蓄水量即t=10时v的值;(2)即找到v=400时,相对应的t的值;(3)从第10天到第30天,水库下降了800−400=400万立方米,一天下降=20万立方米,第30天的400万立方米还能用=20天,即50天时干涸.【详解】解:(1)当t=0时,v=1000∴水库原蓄水量为1000万米3,干涸的速度为1000÷50=20,所以v=1000-20t,当t=10时,v=800,∴水库原蓄水量为1000万立方米,持续

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论