基础强化辽宁省凌源市中考数学真题分类(平行线的证明)汇编章节训练试题(解析版)_第1页
基础强化辽宁省凌源市中考数学真题分类(平行线的证明)汇编章节训练试题(解析版)_第2页
基础强化辽宁省凌源市中考数学真题分类(平行线的证明)汇编章节训练试题(解析版)_第3页
基础强化辽宁省凌源市中考数学真题分类(平行线的证明)汇编章节训练试题(解析版)_第4页
基础强化辽宁省凌源市中考数学真题分类(平行线的证明)汇编章节训练试题(解析版)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省凌源市中考数学真题分类(平行线的证明)汇编章节训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列命题正确的是

()A.三角形的外角大于它的内角B.三角形的一个外角等于它的两个内角C.三角形的一个内角小于与它不相邻的外角D.三角形的外角和是180°2、如图,将一副直角三角板按如图所示叠放,其中,,,则的大小是(

)A. B. C. D.3、用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中()A.有一个内角小于60° B.每一个内角都小于60°C.有一个内角大于60° D.每一个内角都大于60°4、在中,若一个内角等于另外两个角的差,则(

)A.必有一个角等于 B.必有一个角等于C.必有一个角等于 D.必有一个角等于5、将一副三角尺按如图所示的方式摆放,则的大小为(

)A. B. C. D.6、给出下列命题,正确的有(

)个①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形A.1个 B.2个 C.3个 D.4个7、下列说法正确的是(

)A.“任意画一个三角形,其内角和为”是必然事件 B.调查全国中学生的视力情况,适合采用普查的方式C.抽样调查的样本容量越小,对总体的估计就越准确 D.十字路口的交通信号灯有红、黄、绿三种颜色,所以开车经过十字路口时,恰好遇到黄灯的概率是8、如图,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一点,将ACD沿CD翻折后得到CED,边CE交AB于点F.若DEF中有两个角相等,则∠ACD的度数为(

)A.15°或20° B.20°或30° C.15°或30° D.15°或25°第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,在△ABC中,AD平分∠BAC,如果∠B=80°,∠C=40°,那么∠ADC的度数等于_____.2、请写出命题“如果,那么”的逆命题:________.3、如图,直线AB、CD相交于点O,∠BOC=α,点F在直线AB上且在点O的右侧,点E在射线OC上,连接EF,直线EM、FN交于点G.若∠MEF=n∠CEF,∠NFE=(1﹣2n)∠AFE,且∠EGF的度数与∠AFE的度数无关,则∠EGF=__.(用含有α的代数式表示)4、如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.5、如图,若AB⊥BC,BC⊥CD,则直线AB与CD的位置关系是______.6、如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5,能判定AB∥CD的条件个数有__个.7、如图,在△ABC中,∠ACB=60°,D为△ABC边AC上一点,BC=CD,点M在BC的延长线上,CE平分∠ACM,且AC=CE.连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.以下结论:①△ABC≌△EDC;②∠DHF=60°;③若∠A=60°,则AB∥CE;④若BE平分∠ABC中,则EB平分∠DEC;正确的有_____(只填序号)三、解答题(7小题,每小题10分,共计70分)1、如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D作EF∥BC交AB于点E,交AC于点F.(1)如图1,若AD⊥BD于点D,∠BEF=120°,求∠BAD的度数;(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度数(用含α和β的代数式表示).2、如图,点A在MN上,点B在PQ上,连接AB,过点A作交PQ于点C,过点B作BD平分∠ABC交AC于点D,且.(1)求证:;(2)若,求∠ADB的度数.3、已知:如图,BE平分∠ABC,∠1=∠2.求证:BC//DE.4、如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE,(2)若∠A=100°,∠C=50°,求∠AEB的度数.5、如图,在中,,,AD是的角平分线,求的度数.6、如图,已知AB∥CD,AD和BC交于点O,E为OC上一点,F为CD上一点,且∠CEF+∠BOD=180°.说明∠EFC=∠A的理由.7、如图,平分,与相交于F,,求证:.-参考答案-一、单选题1、C【解析】【详解】【分析】根据三角形的外角性质:①三角形的外角和为360°;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于和它不相邻的任何一个内角,分别进行分析即可.【详解】A、三角形的外角大于与它不相邻的内角,故A选项错误;B、三角形的一个外角等于与它不相邻的两个内角之和,故B选项错误;C、三角形的一个内角小于和它不相邻的任何一个外角,故C选项正确;D、三角形的外角和是360°,故D选项错误,故选C.【考点】本题主要考查了三角形的外角的性质,关键是熟练掌握性质定理.2、C【解析】【分析】根据直角三角形的性质可得∠BAC=45°,根据邻补角互补可得∠EAF=135°,然后再利用三角形的外角的性质可得∠AFD=135°+30°=165°.即可.【详解】解:∵∠B=45°,∴∠BAC=45°,∴∠EAF=135°,∴∠AFD=135°+30°=165°,∴∠BFD=180°﹣∠AFD=15°故选:C.【考点】此题主要考查了三角形的内角和,三角形的外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.3、D【解析】【分析】根据反证法的证明步骤解答即可.【详解】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即每一个内角都大于60°.故选:D.【考点】本题考查反证法,熟知反证法的证明步骤,正确得出原结论的反面是解答的关键.4、D【解析】【分析】先设三角形的两个内角分别为x,y,则可得第三个角(180°-x-y),再分三种情况讨论,即可得到答案.【详解】设三角形的一个内角为x,另一个角为y,则第三个角为(180°-x-y),则有三种情况:①②③综上所述,必有一个角等于90°故选D.【考点】本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.5、B【解析】【分析】先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.【详解】解:如图所示,由一副三角板的性质可知:∠ECD=60°,∠BCA=45°,∠D=90°,∴∠ACD=∠ECD-∠BCA=60°-45°=15°,∴∠α=180°-∠D-∠ACD=180°-90°-15°=75°,故选:B.【考点】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6、B【解析】【详解】解:①等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;②等腰三角形两腰上的高相等,本选项正确;③等腰三角形最小边不一定底边,故本选项错误;④等边三角形的高、中线、角平分线都相等,本选项正确;⑤等腰三角形可以是钝角三角形,故本选项错误,故选B7、A【解析】【分析】由三角形的内角和定理可判断A,由抽样调查与普查的含义可判断B,C,由简单随机事件的概率可判断D,从而可得答案.【详解】解:“任意画一个三角形,其内角和为”是必然事件,表述正确,故A符合题意;调查全国中学生的视力情况,适合采用抽样调查的方式,故B不符合题意;抽样调查的样本容量越小,对总体的估计就越不准确,故C不符合题意;十字路口的交通信号灯有红、黄、绿三种颜色,所以开车经过十字路口时,恰好遇到黄灯的概率不是,与三种灯的闪烁时间相关,故D不符合题意;故选A【考点】本题考查的是必然事件的含义,调查方式的选择,简单随机事件的概率,三角形的内角和定理的含义,掌握“以上基础知识”是解本题的关键.8、C【解析】【分析】由三角形的内角和定理可求解∠A=40°,设∠ACD=x°,则∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,可分三种情况:当∠DFE=∠E=40°时;当∠FDE=∠E=40°时;当∠DFE=∠FDE时,根据∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【详解】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B-∠A=10°,∴∠A=40°,∠B=50°,设∠ACD=x°,则∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,当∠DFE=∠E=40°时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°-40°-40°=100°,∴140°-x=100°+40°+x,解得x=0(不存在);当∠FDE=∠E=40°时,∴140°-x=40°+40°+x,解得x=30°,即∠ACD=30°;当∠DFE=∠FDE时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE==70°,∴140°-x=70°+40°+x,解得x=15,即∠ACD=15°,综上,∠ACD=15°或30°,故选:C.【考点】本题主要考查直角三角形的性质,等腰三角形的性质,三角形的内角和定理,根据∠ADC=∠CDE分三种情况列方程是解题的关键.二、填空题1、110°##110度【解析】【分析】由三角形的内角和可求得∠BAC=60°,再由角平分线的定义得∠BAD=30°,利用三角形的外角性质即可求∠ADC的度数.【详解】解:∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=110°.故答案为:110°.【考点】本题主要考查三角形的外角性质,三角形的内角和定理,角平分线的定义,解答的关键是对相应的知识的掌握.2、如果,那么【解析】【分析】根据逆命题的概念解答即可.【详解】解:命题“如果,那么”的逆命题是“如果,那么”,故答案为:如果,那么.【考点】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.3、α##α3【解析】【分析】利用三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角和,以及三角形内角和定理求解.【详解】解:∵∠CEF=∠AFE+∠BOC,∠BOC=α,∴∠CEF=α+∠AFE,∵∠MEF=n∠CEF,∴∠MEF=n(α+∠AFE),∵∠EGF=∠MEF﹣∠NFE,∴∠EGF=n(α+∠AFE)﹣(1﹣2n)∠AFE=nα+(3n﹣1)∠AFE,∵∠EGF的度数与∠AFE的度数无关,∴3n﹣1=0,即n=,∴∠EGF=α;故答案为:α.【考点】此题考查了三角形外角的性质及角度计算,解题的关键是理解∠EGF的度数与∠AFE的度数无关的含义.4、同位角相等,两直线平行.【解析】【详解】利用三角板中两个60°相等,可判定平行,故答案为:同位角相等,两直线平行考点:平行线的判定5、AB∥CD【解析】【详解】∵AB⊥BC,BC⊥CD,∴∠ABC=∠BCD=90°,∴AB∥CD,故答案为AB∥CD.6、3【解析】【分析】根据平行线的判定定理即可判断.【详解】解:(1)∠B+∠BCD=180°,则AB∥CD;(2)∠1=∠2,则AD∥BC;(3)∠3=∠4,则AB∥CD;(4)∠B=∠5,则AB∥CD,故能判定AB∥CD的条件个数有3个.故答案为:3.【考点】本题主要考查了平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7、①②③④【解析】【分析】①可推导∠ACB=∠ACE=60°,进而可证全等;②先证△BFC≌△DGC,得到∠FBC=∠CDG,∠BFC=∠DFH,从而推导得出∠BCF=∠DHF=60°;③由∠A=60°,∠ACE=60°,可得∠A=∠ACE,即可得出ABCE;④利用△BCE的外角∠ECM和△ABC的外角∠ACM的关系,结合∠DEC=∠A可推导得出.【详解】解:∵∠ACB=60°,∴∠ACM=180°−∠ACB=120°,∵CE平分∠ACM,∴∠ACE=∠MCE=∠ACM=60°,∴∠ACB=∠ACE.在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),故①正确;在△BCF和△DCG中,,∴△BCF≌△DCG(SAS).∴∠CBF=∠CDG.∵∠ECM=∠CBF+∠BEC=60°,∴∠CDG+∠CEB=60°.∵∠DCE+∠CDE+∠CED=180°,∠DCE=60°,∴∠CDE+∠CED=120°,∴∠HDE+∠HED=60°,∴∠DHF=∠HDE+∠HED=60°,故②正确;∵∠A=60°,∠ACE=60°,∴∠A=∠ACE,∴AB∥CE,故③正确;∵BE平分∠ABC,∴∠ABE=∠CBE.∵△BCF≌△DCG,∴∠CBE=∠CDG.∴∠CDG=∠ABE=∠CBE.∵△ABC≌△EDC,∴∠ABC=∠CDE,∴∠CDG=∠ABE=∠CBE=∠EDG.∵∠ECM=∠CBF+∠BEC=60°,∠DHF=∠EDG+∠DEB=60°,∴∠CBF+∠BEC=∠EDG+∠DEB,∴∠BEC=∠DEB,即EB平分∠DEC,故④正确;综上,正确的结论有:①②③④.故答案为:①②③④.【考点】本题主要考查了全等三角形的判定定理和性质定理,角平分线的定义,三角形的内角和定理以及平行线的判定定理,正确找出图中的全等三角形是解题的关键.三、解答题1、(1)60°;(2)β-α.【解析】【分析】(1)根据平行线的性质和平角的定义可得∠EBC=60°,∠AEF=60°,根据角平分线的性质和平行线的性质可得∠EBD=∠BDE=∠DBC=30°,再根据三角形内角和定理可求∠BAD的度数;(2)过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,依此即可求解.【详解】解:(1)∵EF∥BC,∠BEF=120°,∴∠EBC=60°,∠AEF=60°,又∵BD平分∠EBC,∴∠EBD=∠BDE=∠DBC=30°,又∵∠BDA=90°,∴∠EDA=60°,∴∠BAD=60°;(2)如图2,过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,则∠FAD+∠C=β-∠DBC=β-∠ABC=β-α.【考点】考查了三角形内角和定理,平行线的性质,角平分线的性质,准确识别图形是解题的关键.2、(1)见解析(2)【解析】【分析】(1)根据,利用三角形内角和.根据,得出,根据平行线判定定理即可得出结论;(2)根据,得出方程,解方程求出,根据BD平分,求出,再根据余角性质求解即可.(1)证明:∵,∴,∴.∵,∴,∴;(2)解:∵,∴,∴,∴∵BD平分,∴,∵,∴.【考点】本题考查平行线判定,三角形内角和,等角的余角性质,一元一次方程,角平分线定义,掌握平行线判定,三角形内角和,等角的余角性质,一元一次方程,角平分线定义是解题关键.3、见解析【解析】【分析】由BE平分∠ABC,可得∠1=∠3,再利用等量代换可得到一对内错角相等,即∠2=∠3,即可证明结论.【详解】证明:∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BC//DE.【考点】本题主要利用了角平分线的性质以及内错角相等、两直线平行等知识点,灵活运用平行线的判定定理成为解答本题的关键.4、(1)见解析(2)∠AEB=65°【解析】【分析】(1)由角平分线可得∠ABE=∠DBE,再证△ABE≌△DBE即可;(2)根据三角形内角和求出∠ABC=30°,再根据角平分线求出∠ABE=15°,根据三角形内角和可求.(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS),(2)解:∵∠A=100°,∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论