基础强化人教版8年级数学下册《平行四边形》定向测评练习题_第1页
基础强化人教版8年级数学下册《平行四边形》定向测评练习题_第2页
基础强化人教版8年级数学下册《平行四边形》定向测评练习题_第3页
基础强化人教版8年级数学下册《平行四边形》定向测评练习题_第4页
基础强化人教版8年级数学下册《平行四边形》定向测评练习题_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》定向测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,菱形ABCD的对角线AC、BD的长分别为6和8,O为AC、BD的交点,H为AB上的中点,则OH的长度为()A.3 B.4 C.2.5 D.52、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()A. B. C.4.5 D.4.33、如图,正方形ABCO和正方形DEFO的顶点A、E、O在同一直线上,且EF=,AB=3,给出下列结论:①∠COD=45°;②AE=3+;③CF=AD=;④S△COF+S△EOF=.期中正确的个数为()A.1个 B.2个 C.3个 D.4个4、已知菱形的边长为6,一个内角为60°,则菱形较长的对角线长是()A. B. C.3 D.65、在□ABCD中,AC=24,BD=38,AB=m,则m的取值范围是()A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<12第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,矩形ABCD中,AB=9,AD=12,点M在对角线BD上,点N为射线BC上一动点,连接MN,DN,且∠DNM=∠DBC,当DMN是等腰三角形时,线段BN的长为___.2、如图,在平行四边形ABCD中,∠B=45°,AD=8,E、H分别为边AB、CD上一点,将▱ABCD沿EH翻折,使得AD的对应线段FG经过点C,若FG⊥CD,CG=4,则EF的长度为_____.3、如图,四边形AOBC是正方形,曲线CP1P2P3⋅⋅⋅叫做“正方形的渐开线”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圆心依次按点A,O,B,C循环,点A的坐标为(2,0),按此规律进行下去,则点P2021的坐标为_____.4、如图,在□中,⊥于点,⊥于点.若,,且的周长为40,则的面积为________.5、如图,在▱ABCD中,BC=3,CD=4,点E是CD边上的中点,将△BCE沿BE翻折得△BGE,连接AE,A、G、E在同一直线上,则AG=______,点G到AB的距离为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形中,,..点在上由点向点出发,速度为每秒;点在边上,同时由点向点运动,速度为每秒.当点运动到点时,点,同时停止运动.连接,设运动时间为秒.(1)当为何值时,四边形为平行四边形?(2)设四边形的面积为,求与之间的函数关系式.(3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数.(4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由.2、(阅读材料)材料一:我们在小学学习过正方形,知道:正方形的四条边都相等,四个角都是直角;材料二:如图1,由一个等腰直角三角形和一个正方形组成的图形,我们要判断等腰直角三角形的面积与正方形的面积的大小关系,可以这样做:如图2,连接AC,BD,把正方形分成四个与等腰三角形ADE全等的三角形,所以.(解决问题)如图3,图中由三个正方形组成的图形(1)请你直接写出图中所有的全等三角形;(2)任意选择一组全等三角形进行证明;(3)设图中两个小正方形的面积分别为S1和S2,若,求S1和S2的值.3、已知:如图,在四边形中,,.求证:(1)BECD;(2)四边形是矩形.4、(1)如图1中,∠A=90°,请用直尺和圆规作一条直线,把ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹).(2)已知内角度数的两个三角形如图2、图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线,并标注底角的度数.(3)一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大的内角可能值为.5、如图,平行四边形ABCD中,对角线AC、BD相交于点O,AB⊥AC,AB=3,AD=5,求BD的长.-参考答案-一、单选题1、C【解析】【分析】根据菱形的性质求得边长,进而根据三角形中位线定理求得的长度.【详解】∵四边形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵点H是AD中点,∴OH是△DAB的中位线,在Rt△AOB中,AB5,则OHAB=2.5故选C【点睛】本题考查了菱形的性质,三角形中位线定理,求得的长是解题的关键.2、A【解析】【分析】根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.【详解】解:∵四边形ABCD为正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵点G为DE的中点,∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故选A.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.3、B【解析】【分析】根据∠COD=180°﹣∠AOC﹣∠DOE得到∠COD=45°,根据已知条件求出OE=2,得到AE=AO+OE=2+3=5,作DH⊥AB于H,作FG⊥CO交CO的延长线于G,根据勾股定理即可得到BD,根据三角形面积的关系计算即可;【详解】①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故①正确;②∵EF,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故②错误;③作DH⊥AB于H,作FG⊥CO交CO的延长线于G,则FG=1,CF,BH=3﹣1=2,DH=3+1=4,BD,故③错误;④△COF的面积S△COF3×1,△EOF的面积S△EOF=()2=1S△COF+S△EOF=故④正确;正确的是①④;故选:B.【点睛】本题主要考查了正方形的性质,勾股定理,准确计算是解题的关键.4、B【解析】【分析】根据一个内角为60°可以判断较短的对角线与两邻边构成等边三角形,求出较长的对角线的一半,再乘以2即可得解.【详解】解:如图,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等边三角形,菱形的边长为6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形较长的对角线长BD是:2×3=6.故选:B.【点睛】本题考查了菱形的性质和勾股定理,等边三角形的判定,解题关键是熟练运用菱形的性质和等边三角形的判定求出对角线长.5、C【解析】【分析】作出平行四边形,根据平行四边形的性质可得,,然后在中,利用三角形三边的关系即可确定m的取值范围.【详解】解:如图所示:∵四边形ABCD为平行四边形,∴,,在中,,∴,即,故选:C.【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键.二、填空题1、15或24或【解析】【分析】分三种情形讨论求解即可.【详解】解:①如图1中,当NM=ND时,∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如图2中,当DM=DN时,此时M与B重合,∴BC=CN=12,∴BN=24;③如图3中,当MN=MD时,∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,设BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,综上,当DMN是等腰三角形时,线段BN的长为15或24或.故答案为:15或24或.【点睛】本题考查了矩形的性质、等腰三角形的判定和性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,注意不能漏解.2、【解析】【分析】延长CF与AB交于点M,由平行四边形的性质得BC长度,GM⊥AB,由折叠性质得GF,∠EFM,进而得FM,再根据△EFM是等腰直角三角形,便可求得结果.【详解】解:延长CF与AB交于点M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折叠知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案为:8-4.【点睛】本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形.3、(4044,0)【解析】【分析】由题意可知:正方形的边长为2,分别求得,可发现点的位置是四个一循环,每旋转一次半径增加2,找到规律,即求得点P2021在x轴正半轴,进而求得OP的长度,即可求得点的坐标.【详解】由题意可知:正方形的边长为2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可发现点的位置是四个一循环,每旋转一次半径增加2,2021÷4=505…1,故点P2021在x轴正半轴,OP的长度为2021×2+2=4044,即:P2021的坐标是(4044,0),故答案为:(4044,0).【点睛】本题考查了平面直角坐标系点的坐标规律,正方形的性质,找到点的位置是四个一循环,每旋转一次半径增加2的规律是解题的关键.4、48【解析】【分析】根据题意可得:,再由平行四边形的面积公式整理可得:,根据两个等式可得:,代入平行四边形面积公式即可得.【详解】解:∵▱ABCD的周长:,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴▱ABCD的面积:,故答案为:48.【点睛】题目主要考查平行四边形的性质及运用方程思想进行求解线段长,理解题意,熟练运用平行四边形的性质及其面积公式是解题关键.5、2##【解析】【分析】根据折叠性质和平行四边形的性质可以证明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的长,进而可得GF的值.【详解】解:如图,GF⊥AB于点F,∵点E是CD边上的中点,∴CE=DE=2,由折叠可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在▱ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于点F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根据勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=,∴GF2=AG2-AF2=4-=,∴GF=,故答案为2,.【点睛】本题考查了折叠的性质、平行四边形的性质、勾股定理等知识,证明△ABG≌△EAD是解题的关键.三、解答题1、(1);(2)y=S四边形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)当t=4或

或时,为等腰三角形,理由见解析.【分析】(1)利用平行四边形的对边相等AQ=BP建立方程求解即可;

(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;

(3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;

(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.【详解】解:(1)∵在平行四边形中,,,由运动知,AQ=16−t,BP=2t,

∵四边形ABPQ为平行四边形,

∴AQ=BP,

∴16−t=2t

∴t=,

即:t=s时,四边形ABPQ是平行四边形;(2)过点A作AE⊥BC于E,如图,在Rt△ABE中,∠B=30°,AB=8,

∴AE=4,

由运动知,BP=2t,DQ=t,

∵四边形ABCD是平行四边形,

∴AD=BC=16,

∴AQ=16−t,

∴y=S四边形ABPQ=(BP+AQ)•AE=(2t+16−t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,

∵BC=16,

∴S四边形ABCD=16×4=64,

由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),

∵四边形ABPQ的面积是四边形ABCD的面积的四分之三

∴2t+32=×64,

∴t=8;

如图,当t=8时,点P和点C重合,DQ=8,

∵CD=AB=8,

∴DP=DQ,

∴∠DQC=∠DPQ,

∴∠D=∠B=30°,

∴∠DQP=75°;(4)①当AB=BP时,BP=8,

即2t=8,t=4;

②当AP=BP时,如图,∵∠B=30°,

过P作PM垂直于AB,垂足为点M,

∴BM=4,,解得:BP=,

∴2t=,

∴t=

③当AB=AP时,同(2)的方法得,BP=,

∴2t=,

∴t=

所以,当t=4或或时,△ABP为等腰三角形.【点睛】此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.2、(1);;;(2)证明;证明见解析;(3),【分析】(1)根据图形可得出三对全等三角形;(2)根据正方形的性质及全等三角形的判定定理对(1)中全等三角形依次证明即可;(3)连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,即可得出;连接HJ,KI,过点H作HM⊥AD于点M,过点I作IN⊥CD于点N,则被分为9个面积相等的等腰直角三角形,即可得出.【详解】解:(1);;(2)证明;由题意得,在正方形ABCD中,∵,,在和中;证明:;由题意得,在正方形HIJK中,,,∵AC为正方形ABCD的对角线,∴,在和中,∴;证明:由题意得,在正方形EBFG中,,,∵AC为正方形ABCD的对角线,∴,在和中,∴;(3)如图,连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,.∴连接HJ,KI,过点H作HM⊥AD于点M,过点I作IN⊥CD于点N,则被分为9个面积相等的等腰直角三角形,∴.∴,.【点睛】题目主要考查正方形的性质、全等三角形的判定定理及对题意的理解能力,熟练掌握全等三角形的判定定理及理解题意是解题关键.3、(1)见详解;(2)见详解【分析】(1)根据平行四边形的判定定理得四边形是平行四边形,进而即可得到结论;(2)先推出∠EBC=∠DCB,进而可得∠EBC=∠DCB=90

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论