版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
冀教版8年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、一次函数,,且随的增大而减小,则其图象可能是()A. B.C. D.2、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,或.其中正确的结论有()A.1个 B.2个 C.3个 D.4个3、若点M在第二象限,且点M到x轴的距离为2,到y轴的距离为1,则点M的坐标为()A. B. C. D.4、已知正比例函数的图像经过点(2,4)、(1,)、(1,),那么与的大小关系是()A. B. C. D.无法确定5、下面调查统计中,适合采用普查方式的是()A.华为手机的市场占有率 B.“现代”汽车每百公里的耗油量C.“国家宝藏”专栏电视节目的收视率 D.乘坐飞机的旅客是否携带了违禁物品6、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是()A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD7、2021年我市有52000名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.52000名考生是总体 B.1000名考生是总体的一个样本C.1000名考生是样本容量 D.每位考生的数学成绩是个体第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,在△ABC中,D,E分别是边AB,AC的中点,如果BC=7,那么DE=____.2、已知直角坐标平面内的两点分别为A(2,﹣3)、B(5,6),那么A、B两点的距离等于______.3、已知M(1,a)和N(2,b)是一次函数y=-x+1图像上的两点,则a______b(填“>”、“<”或“=”).4、如图,一次函数y=2x和y=ax+5的图象交于点A(m,3),则不等式ax+5<2x的解集是_____.5、如图①,小刚沿菱形纸片ABCD各边中点的连线裁剪得到四边形纸片EFGH,再将纸片EFGH按图②所示的方式分别沿MN、PQ折叠,当PNEF时,若阴影部分的周长之和为16,△AEH,△CFG的面积之和为12,则菱形纸片ABCD的一条对角线BD的长为_____.6、五边形内角和为__________.7、如图,在矩形中,的角平分线交于点,连接,恰好平分,若,则的长为______.8、已知点是第二象限的点,则的取值范围是______.三、解答题(7小题,每小题10分,共计70分)1、已知线段AB,如果将线段AB绕点A逆时针旋转90°得到线段AC,则称点C为线段AB关于点A的“逆转点”,点C为线段AB关于点A的逆转点的示意图如图1:(1)如图2,在正方形ABCD中,点为线段DA关于点D的逆转点;(2)在平面直角坐标系xOy中,点P(x,0),点E是y轴上一点,.点F是线段EO关于点E的逆转点,点M(纵坐标为t)是线段EP关于点E的逆转点.①当时,求点M的坐标;②当,直接写出x的取值范围:.2、平面直角坐标系中有点、,连接AB,以AB为直角边在第一象限内作等腰直角三角形,则点C的坐标是_________.3、某校计划为在校运会上表现突出的12名志愿者每人颁发一件纪念品,李老师前往购买钢笔和笔记本作为纪念品,如果买10支钢笔和2本笔记本,需230元;如果买8支钢笔和4本笔记本,需220元.(1)求钢笔和笔记本的单价;(2)售货员提示:当购买的钢笔超过6支时,所有的钢笔打9折.设购买纪念品的总费用为w元,其中钢笔的支数为a.①当时,求w与a之间的函数关系式;②李老师购买纪念品一共花了210元钱,他可能购买了多少支钢笔?4、已知一次函数y=2x+4,一次函数图象与x轴交于点A,与y轴交于点B.(1)直接写出点A、B的坐标;(2)在平面直角坐标系xOy中,画出函数图象;(3)当时,直接写出y的取值范围.5、如图,已知ABC中,,,AB=6,点P是射线CB上一点(不与点B重合),EF为PB的垂直平分线,交PB于点F,交射线AB于点E,联结PE、AP.(1)求∠B的度数;(2)当点P在线段CB上时,设BE=x,AP=y,求y关于x的函数解析式,并写出函数的定义域;(3)当APB为等腰三角形时,请直接写出AE的值.6、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.(1)如图1,CDOB,CD=OA,连接AD,BD.①;②若OA=2,OB=3,则BD=;(2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;(3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.7、在平面直角坐标系xOy中,A(﹣1,1)B(3,2),连接线段AB.(1)一次函数y=﹣x+b与线段AB有交点,求b的取值范围;(2)一次函数y=kx+3与线段AB有交点,求k的取值范围.-参考答案-一、单选题1、B【解析】【分析】根据一次函数的图象是随的增大而减小,可得,再由,可得,即可求解.【详解】解:一次函数的图象是随的增大而减小,∴,;又,,一次函数的图象经过第二、三、四象限.故选:B【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.2、B【解析】【分析】当不动时,距离300千米,就是A,B两地的距离;甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,确定甲,乙的函数解析式,求交点坐标;分甲出发,乙未动,距离为50千米,甲出发,乙出发,且甲在前50距离50千米,甲在后距离50千米,乙到大时距离为50千米四种情形计算即可.【详解】∵(0,300)表示不动时,距离300千米,就是A,B两地的距离,∴①正确;∵甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,∴乙车比甲车晚出发1小时,却早到1小时;∴②正确;设,∴300=5m,解得m=60,∴;设,∴解得,∴;∴解得t=2.5,∴2.5-1=1.5,∴乙车出发后1.5小时追上甲车;∴③错误;当乙未出发时,,解得t=;当乙出发,且在甲后面时,,解得t=;当乙出发,且在甲前面时,,解得t=;当乙到大目的地,甲自己行走时,,解得t=;∴④错误;故选B.【点睛】本题考查了函数的图像,一次函数的解析式确定,交点的意义,熟练掌握待定系数法,准确捕获图像信息是解题的关键.3、C【解析】【分析】根据平面直角坐标系中第二象限内点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值,即可求解.【详解】解:点M在第二象限,且M到轴的距离为2,到y轴的距离为1,点M的横坐标为,点的纵坐标为,点M的坐标为:.故选:C.【点睛】本题考查了平面直角坐标系中点的坐标,熟练掌握坐标系中点的特征是解题的关键.4、A【解析】【分析】先求出正比例函数解析式根据正比例函数的图象性质,当k<0时,函数随x的增大而减小,可得y1与y2的大小.【详解】解:∵正比例函数的图像经过点(2,4)、代入解析式得解得∴正比例函数为∵<0,∴y随x的增大而减小,由于-1<1,故y1<y2.故选:A.【点睛】本题考查了正比例函数图象上点的坐标特征,用到的知识点为:正比例函数的图象,当k<0时,y随x的增大而减小是解题关键.5、D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、对华为手机的市场占有率的调查范围广,适合抽样调查,故此选项不符合题意;B、对“现代”汽车每百公里的耗油量的调查范围广适合抽样调查,故此选项不符合题意;C、对“国家宝藏”专栏电视节目的收视率的调查范围广,适合抽样调查,故此选项不符合题意;D、对乘坐飞机的旅客是否携带了违禁物品的调查情况适合普查,故此选项符合题意;故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【解析】【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∴,故B正确;∴AD=BC,故C正确;故选:D.【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.7、D【解析】【分析】根据总体、样本、样本容量、样本个体的定义,对各个选项进行判断即可.【详解】解:由题意知:52000名考生的数学成绩是总体,A说法错误,故不符合要求;1000名考生的数学成绩是总体的一个样本,B说法错误,故不符合要求;1000是样本容量,C说法错误,故不符合要求;每位考生的数学成绩是个体,D说法正确,故符合要求;故选D.【点睛】本题考查了总体、样本、样本容量、样本个体的定义.解题的关键在于把握各名词的区别.二、填空题1、3.5##72【解析】【分析】根据DE是△ABC的中位线,计算求解即可.【详解】解:∵D,E分别是边AB,AC的中点∴DE是△ABC的中位线∴DEBC3.5故答案为:3.5.【点睛】本题考查了中位线.解题的关键在于正确的求值.2、【解析】【分析】根据两点,利用勾股定理进行求解.【详解】解:在平面直角坐标系中描出、,分别过作平行于的线交于点,如图:的横坐标与的横坐标相同,的纵坐标与的纵坐标相同,,,,,故答案为:.【点睛】本题考查的是勾股定理,坐标与图形性质,解题的关键是掌握如果直角三角形的两条直角边长分别是,,斜边长为,那么.3、>【解析】【分析】由M(1,a)和N(2,b)是一次函数y=-x+1图象上的两点,利用一次函数图象上点的坐标特征可求出a,b的值,比较后即可得出结论.【详解】解:当x=1时,a=-1+1=0;当x=2时,b=-2+1=-1.∵0>-1,∴a>b.故答案为:>.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.4、##【解析】【分析】把点A(m,3)代入y=2x求解的值,再利用的图象在的图象的上方可得答案.【详解】解:一次函数y=2x和y=ax+5的图象交于点A(m,3),不等式ax+5<2x的解集是故答案为:【点睛】本题考查的是根据一次函数的交点坐标确定不等式的解集,理解一次函数的图象的性质是解本题的关键.5、12【解析】【分析】证出EH是△ABD的中位线,得出BD=2EH=4HN,由题意可以设AN=PC=x,EN=HN=PF=PG=y.构建方程组求出x,y即可解决问题.【详解】解:连接BD,如图所示:∵四边形ABCD是菱形,∴AB=AD,AC与BD垂直平分,∵E是AB的中点,H是AD的中点,∴AE=AH,EH是△ABD的中位线,∴EN=HN,BD=2EH=4HN,由题意可以设AN=PC=x,EN=HN=PF=PG=y.则有,解得:,∴AN=2,HN=3,∴BD=4HN=12;故答案为:12.【点睛】本题考查了菱形的性质,矩形的判定和性质、三角形中位线定理、方程组的解法等知识,解题的关键是学会利用参数构建方程解决问题.6、540°【解析】【分析】根据n边形的内角和公式(n-2)·180°求解即可.【详解】解:五边形内角和为(5-2)×180°=540°,故答案为:540°.【点睛】本题考查多边形的内角和,熟记多边形的内角和公式是解答的关键.7、【解析】【分析】根据矩形的性质得,,,根据BE是的角平分线,得,则,,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分则,等量代换得,所以,,即可得.【详解】解:∵四边形ABCD为矩形,∴,,,∵,BE是的角平分线,∴,∴,在中,根据勾股定理得,,∵,∴,∵EC平分,∴,∴,∴,∴,∴,故答案为:.【点睛】本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.8、【解析】【分析】根据点是第二象限的点,可得,即可求解.【详解】解:∵点是第二象限的点,∴,解得:,∴的取值范围是.故答案为:【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.三、解答题1、S=4×4=1③如图4中,当8t<12时,重叠部分是四边形BMPC,S=16﹣4×=48﹣2t.④当t≥12时,S=0.综上所述:S【点睛】本题考查矩形的性质、全等三角形的判定和性质、二次根式的性质、列函数解析式等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形6.(1)C(2)①或;②-5≤x<1或3≤x<9【解析】【分析】(1)根据逆转点的定义判断即可.(2)①点E的位置有两种情形:分两种情形,发现画出图形求解即可.②根据﹣1≤t<5,结合①判断即可.(1)解:根据“逆转点”的定义可知,点C为线段DA关于点D的逆转点.故答案为C.(2)解:①∵E是y轴上的一点,OE=4,∴点E的位置有两种情形:当点E在y轴的正半轴上时,作出线段E1O关于点E1的逆转点F1以及线段E1P关于点E1的逆转点M1∵∠PE1M1=∠OE1F1=∴∠PE1O=∠M1E1F1∵OE1=F1E1=4,E1P=E1M1∴∴∠F1=∠POE1=M1F1=OP=3∴当点E在y轴的负半轴上的点E2时,同法可得,综上所述,满足条件的点M的坐标为或.②由①可知,当-1≤t<5时,-5≤x<1或3≤x<9.故答案为:-5≤x<1或3≤x<9.【点睛】本题考查了旋转变换,全等三角形的判定和性质,坐标图与图形的变化等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.2、3,7或7,4##7,4或3,7【解析】【分析】根据题意作出图形,①当∠BAC=90°时,过点C1作C1D⊥y轴于点,证明△AC1D△BAO;②当∠ABC=90°时,过点C2作C1E⊥x【详解】解:如图,、,∴AB=以AB为直角边在第一象限内作等腰直角三角形,则AC=AB=5,①当∠BAC=90°时,过点C1作C1D⊥y∵∠AOB=90°∴∠OAB+∠OBA=∠OAB+∠DA∴∠DA在△AC1D∠AOB=∠△AC1D∴AD=OB=4,D∴OD=OA+AD=3+4=7∴②当∠ABC=90°时,过点C2作C1E⊥x同理可得△AOB≌△BEOE=OB+BE=4+3=7,C2∴综上,点C的坐标是3,7或7,4故答案为:3,7或7,4【点睛】本题考查了坐标与图形,等腰直角三角形的性质,三角形全等的性质与判定,分类讨论是解题的关键.3、(1)钢笔的单价为元,笔记本的单价为元.(2)①;②6支或10支【解析】【分析】(1)设钢笔的单价为元,笔记本的单价为元,再根据买10支钢笔和2本笔记本,需230元;买8支钢笔和4本笔记本,需220元,列方程组,再解方程组即可;(2)①当时,由总费用等于购买钢笔与笔记本的费用之和可列函数关系式,②分两种情况列方程,当或再解方程可得答案.(1)解:设钢笔的单价为元,笔记本的单价为元,则解得:答:钢笔的单价为元,笔记本的单价为元.(2)解:①当时,w与a之间的函数关系式为:所以w与a之间的函数关系式为②当时,则解得:当时,解得:所以李老师购买纪念品一共花了210元钱,他可能购买了6支或支钢笔.【点睛】本题考查的是二元一次方程组的应用,一次函数的应用,掌握“确定相等关系列二元一次方程组与一次函数的关系式”是解本题的关键.4、(1)(2)作图见解析(3)【解析】【分析】(1)令求解一次函数与轴的交点坐标,令求解一次函数与轴的交点坐标;(2)先列表,再描点,连线即可得到函数是图象;(3)分别先求解当时的函数值,再根据一次函数的增减性即可得到答案.(1)解:一次函数y=2x+4,令则令则(2)解:列表:描点并连线(3)解:一次函数y=2x+4,随的增大而减小,当时,当时,所以当时,【点睛】本题考查的是画一次函数的图象,求解一次函数与坐标轴的交点,一次函数的增减性,掌握“画一次函数的图象与一次函数的增减性”是解本题的关键.5、(1)(2)当点P在线段BC上时,;当点P在CB延长线上时,(3)4或或【解析】【分析】(1)根据勾股定理的逆定理证明出△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,证得△ACM是等边三角形,求得∠B=;(2)当点P在线段BC上时,过点A作AD⊥BC于D,根据直角三角形的性质得到,,由勾股定理得,求出,得到BP=3x,由勾股定理求出CD,BF,得到DP,由AD2+DP2=AP2,推出y2=3x2−18x+36,根据y>0,得到函数关系式;当点P在CB延长线上时,过点P作PH⊥AB(3)当AP=BP时,根据等腰三角形等边对等角的性质及线段垂直平分线的性质证得∠APE=,得到AE=2PE=2BE,由此求出AE=4;当BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF,利用勾股定理得EF2+BF2=(2EF)2,求出BE,即可得到AE的值.当点P在CB延长线上且BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF(1)解:ABC中,,,AB=6,∵AC∴△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,∵,,∴AC=1∴AC=AM=CM,∴△ACM是等边三角形,∴∠C=∴∠B=;(2)解:当点P在线段BC上时,过点A作AD⊥BC于D,在△ADB中,∠ADB=,∠B=,∴,同理,∴CD=A在Rt△BEF中,,∴(1∴,又∵BP=2BF,∴BP=3∴DP=33∵AD∴32∴y2∵y>0,∴;当点P在CB延长线上时,过点P作PH⊥AB交延长线于H,∵PE=BE=x,∠PEH=2∠PBH=∴EH=1∴PH=P∴AH=AB+BE+EH=6+3∵AH∴(6+3∴y2∵y>0,∴;综上,当点P在线段BC上时,;当点P在CB延长线上时,;(3)解:当AP=BP时,则∠PAB=∠B=,如图,∴∠APB=120°,∵EF为PB的垂直平分线,∴PE=BE,∴∠BPE=∠B=,∴∠APE=,∴AE=2PE=2BE,∵AE+BE=6,∴AE=4;当BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠B=,∴BE=2EF,∵EF∴EF=3∴AE=AB-BE=;当点P在CB延长线上且BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠EBF=,∴BE=2EF,∵EF∴EF=3∴AE=AB+BE=;综上,AE的值为4或或.【点睛】此题考查了勾股定理及逆定理,直角三角形30度角的性质,线段垂直平分线的性质,等腰三角形的性质,求函数解析式,熟记各知识点并综合应用是解题的关键.6、(1)△DCA;(2)∠ABO+∠OCE=45°,理由见解析(3)【解析】【分析】(1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;(2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;(3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.(1)解:①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026秋季国家管网集团福建公司高校毕业生招聘考试备考试题(浓缩500题)含答案详解(综合题)
- 2026年秦皇岛市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(完整版)
- 2026秋季国家管网集团山东分公司高校毕业生招聘考试备考题库(浓缩500题)及答案详解1套
- 2025国网甘肃省电力校园招聘(提前批)笔试模拟试题浓缩500题含答案详解(培优a卷)
- 国家管网集团2026届高校毕业生招聘考试备考题库(浓缩500题)及答案详解(历年真题)
- 2026届国家管网集团高校毕业生招聘考试参考题库(浓缩500题)带答案详解(巩固)
- 2026国网山西电力校园招聘(提前批)笔试模拟试题浓缩500题附答案详解ab卷
- 2026秋季国家管网集团山东分公司高校毕业生招聘笔试备考题库(浓缩500题)及参考答案详解(巩固)
- 2026国家管网集团高校毕业生招聘笔试备考题库(浓缩500题)带答案详解
- 2026国家管网集团广西公司秋季高校毕业生招聘笔试模拟试题(浓缩500题)附参考答案详解(b卷)
- 药学毕业论文5000字药学论文的5000字(合集十二篇)
- 控压钻井专业技术及节流阀专题
- 专项维修资金使用公告示范文本
- 2022年遵义市医疗系统事业编制乡村医生招聘笔试试题及答案解析
- YC/T 395-2011烟叶仓库磷化氢熏蒸尾气净化技术规范
- 第三章 回转钻进工艺
- GB/T 224-2019钢的脱碳层深度测定法
- 锐捷极简网络解决方案
- 6078三菱帕杰罗v87v97v93维修手册原厂10pajero-china index
- 粮油储藏技术规范
- 孕妇体重管理课件
评论
0/150
提交评论