解析卷北京市朝阳区日坛中学7年级下册数学期末考试专题攻克试题(解析卷)_第1页
解析卷北京市朝阳区日坛中学7年级下册数学期末考试专题攻克试题(解析卷)_第2页
解析卷北京市朝阳区日坛中学7年级下册数学期末考试专题攻克试题(解析卷)_第3页
解析卷北京市朝阳区日坛中学7年级下册数学期末考试专题攻克试题(解析卷)_第4页
解析卷北京市朝阳区日坛中学7年级下册数学期末考试专题攻克试题(解析卷)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市朝阳区日坛中学7年级下册数学期末考试专题攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,将一副三角板的直角顶点重合在一起,且AOC=110°,则BOD=()度.A.50 B.60 C.70 D.802、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是()A.30° B.45° C.60° D.75°3、在一个不透明的纸箱中,共有个蓝色、红色的玻璃球,它们除颜色外其他完全相同.小柯每次摸出一个球后放回,通过多次摸球试验后发现摸到蓝色球的频率稳定在,则纸箱中红色球很可能有()A.个 B.个 C.个 D.个4、下列运算正确的是().A.a2•a3=a6 B.a3÷a=a3 C.(a2)3=a5 D.(3a2)2=9a45、如图,在△ABC中,AB=AC,点D是BC的中点,那么图中的全等三角形的对数是()A.0 B.1 C.2 D.36、小丽的微信红包原有100元钱,她在新年一周里抢红包,红包里的钱随着时间的变化而变化,在上述过程中,自变量是()A.时间 B.小丽 C.80元 D.红包里的钱7、若,那么的值是().A.5 B. C.1 D.78、下列计算中,正确的是()A. B. C. D.9、下列计算正确的是()A. B. C. D.10、李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,在中,,一条线段,P,Q两点分别在线段和的垂线上移动,若以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,则的长为_________.2、如图,直线AB和CD交于O点,OD平分∠BOF,OE⊥CD于点O,∠AOC=40,则∠EOF=_______.3、如图,过直线AB上一点O作射线OC、OD,并且OD是∠AOC的平分线,∠BOC=29°18′,则∠BOD的度数为___________.4、刹车距离与刹车时的速度有如下关系:,小李以的速度行驶在路上.突然发现前方8m处有个水沟,小李马上踩下刹车(忽略反应时间),问是否来得及________(填“是”或“否”).5、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有:______.(填写序号,写出所有正确答案)6、不透明的袋子中有3个白球和2个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,恰好是白球的概率________.7、一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图所示,则慢车比快车早出发______小时,快车追上慢车行驶了______千米,快车比慢车早______小时到达B地.从A地到B地快车比慢车共少用了______小时.8、若a+b=3,ab=1,则(a﹣b)2=________.9、下面的表格列出了一个实验室的部分统计数据,表示皮球从高处落下时,弹跳高度x与下降高度y的关系:y5080100150x25405075根据表格中两个变量之间的关系,则当时,_________.10、已知∠A的补角是142°,则∠A的余角的度数是___________.三、解答题(6小题,每小题10分,共计60分)1、从边长为a的正方形中减掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(2)运用你从(1)写出的等式,完成下列各题:①已知:a﹣b=3,a2﹣b2=21,求a+b的值;②计算:.2、某商店实行有奖销售,印有1万张奖券,其中有10张一等奖,50张二等奖,500张三等奖,其余均无奖,任意抽取一张,(1)获得一等奖的概率有多大?(2)获奖的概率有多大?(3)如果使得获三等奖的概率为,那么需要将多少无奖券改为三等奖券3、如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点三角形ABC(三角形的顶点都在网格格点上).(1)在图中画出△ABC关于直线l对称的△A′B′C′(要求:点A与点A′、点B与点B′、点C与点C′相对应);(2)在(1)的结果下,设AB交直线l于点D,连接AB′,求四边形AB′CD的面积.4、如图,点C、F在BE上,BF=EC,AB∥DE,且∠A=∠D,求证:AC=DF5、在等腰梯形ABCD中,AD∥BC,AB=CD,梯形的周长为28,底角为30°,高AH=,上下底的和为,写出与之间的函数关系式.6、某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的).x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,每月的乘车人数x与每月利润y分别是变量和变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?-参考答案-一、单选题1、C【分析】求的度数,只需求,和的度数,由图上可知与,与两角互余,两个直角三角板直角顶点重合隐含数量关系,根据已知条件,与、、几个角的和差等量关系求解此题.【详解】解:由题可知:,,,又,,又,,,,故选:C.【点睛】本题考查了学生需从学习工具中抽象出直角、余角简单几何图形初步建模能力,解题的关键是掌握角互余的关系,同时也提升了学生从数的加减运算过渡到形的角的和差计算能力.2、D【分析】由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.【详解】解:∵AC平分∠BAD,∠BAD=90°,∴∠BAC=45°∵BD∥AC,∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,∵∠CBD=∠ABD+∠ABC=45°+60°=105°,∴∠1=75°,故选D.【点睛】本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.3、D【分析】根据利用频率估计概率得到摸到蓝色球的概率为20%,由此得到摸到红色球的概率=1-20%=80%,然后用80%乘以总球数即可得到红色球的个数.【详解】解:∵摸到蓝色球的频率稳定在20%,∴摸到红色球的概率=1-20%=80%,∵不透明的布袋中,有黄色、白色的玻璃球共有15个,∴纸箱中红球的个数有15×80%=12(个).故选:D.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.4、D【分析】分别根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则以及积的乘方法则逐一判断即可.【详解】解:A、a2•a3=a5a6,故本选项不合题意;B、a3÷a=a2a3,故本选项不合题意;C、(a2)3=a6a5,故本选项不合题意;D、(3a2)2=9a4,故本选项符合题意;故选:D.【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,掌握运算法则正确计算是本题的解题关键.5、D【分析】先利用SSS证明△ABD≌△ACD,再利用SAS证明△ABE≌△ACE,最后利用SSS证明△BDE≌△CDE即可.【详解】∵AB=AC,点D是BC的中点,∴AB=AC,BD=CD,AD=AD,∴△ABD≌△ACD,∴∠BAE=∠CAE,∵AB=AC,AE=AE,∴△ABE≌△ACE,∴BE=CE,∵BD=CD,DE=DE,∴△BDE≌△CDE,故选D.【点睛】本题考查了三角形全等的判定和性质,结合图形特点,选择合适的判定方法是解题的关键.6、A【分析】一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有为一得值与其对应,那么我们就说x是自变量,所以上述过程中,自变量是时间.【详解】解:小丽的微信红包原有100元钱,她在新年一周里抢红包,红包里的钱随着时间的变化而变化,在上述过程中,自变量是时间,故选:.【点睛】此题主要考查了自变量的定义,解答此题的关键是要明确自变量的定义,看哪个量随着另一个量变化而变化.7、B【分析】原式移项后,利用完全平方式变形,得到平方和绝对值的和形式,进而求得a、b值,即可得解.【详解】∵,∴,∴,∴,=0,解得:a=-2,b=3,则,故选:B【点睛】此题考查了完全平方公式的运用,掌握完全平方公式是解答此题的关键.8、C【分析】根据同底数幂的乘法、合并同类项、积的乘方、幂的乘方运算法则以及完全平方公式对各项进行计算即可解答.【详解】解:A.,故原选项计算错误,不符合题意;B.与不能合并,故原选项计算错误,不符合题意;C.,计算正确,符合题意;D.,故原选项计算错误,不符合题意.故选:C.【点睛】本题主要考查了同底数幂的乘法、合并同类项、幂的乘方运算法则以及完全平方公式等知识点,灵活运用相关运算法则是解答本题的关键.9、C【分析】分别根据幂的乘方、同底数幂的乘法、同底数幂的除法、单项式乘以单项式法则逐项计算,即可求解.【详解】解:A.,故原选项计算错误,不合题意;B.,故原选项计算错误,不合题意;C.,故原选项计算正确,符合题意;D.,故原选项计算错误,不合题意.故选:C【点睛】本题考查了幂的乘方、同底数幂的乘法、同底数幂的除法、单项式乘以单项式运算,熟知运算法则并正确计算是解题关键.10、B【详解】由实际问题抽象出函数关系式关键是找出等量关系,本题等量关系为“用篱笆围成的另外三边总长应恰好为24米”,结合BC边的长为x米,AB边的长为y米,可得BC+2AB=24,即x+2y=24,即y=-x+12.因为菜园的一边是足够长的墙,所以0<x<24.故选B.二、填空题1、6cm或12cm【分析】先根据题意得到∠BCA=∠PAQ=90°,则以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,由此利用全等三角形的性质求解即可.【详解】解:∵AX是AC的垂线,∴∠BCA=∠PAQ=90°,∴以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,当△ACB≌△QAP,∴;当△ACB≌△PAQ,∴,故答案为:6cm或12cm.【点睛】本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.2、130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.3、【分析】先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.【详解】解:,,是的平分线,,,故答案为:.【点睛】本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.4、否【分析】把v=先换算单位为10m/s,再代入函数关系式即可求出s的值,然后与8米作比较即得答案.【详解】解:当v==10m/s时,,所以他来不及踩下刹车.故答案为:否.【点睛】本题考查了已知自变量求因变量的值,属于基本计算题,先换算单位、再准确计算是解题关键.5、②【分析】根据两边及其夹角对应相等的两个三角形全等,即可求解.【详解】解:①若选,是边边角,不能得到形状和大小都确定的;②若选,是边角边,能得到形状和大小都确定的;③若选,是边边角,不能得到形状和大小都确定的;所以乙同学可以选择的条件有②.故答案为:②【点睛】本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.6、0.6【分析】根据概率计算公式计算即可.【详解】恰好是白球的概率是=0.6,故答案为:0.6.【点睛】本题考查了简单地概率计算,熟练掌握概率的计算公式是解题的关键.7、227646【分析】根据横纵坐标的意义,分别分析得出即可.【详解】由图象直接可得出:一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地,从A地到B地快车比慢车共少用了18-(14-2)=6小时.故答案为2,276,4,6.【点睛】此题主要考查了函数图象,从图象上获取正确的信息是解题关键.8、5【分析】直接利用完全平方公式计算得出答案.【详解】解:∵a+b=3,ab=1,∴(a+b)2=9,则a2+2ab+b2=9,∴a2+b2=9-2=7;(a-b)2=a2-2ab+b2=7-2=5.故答案为:5.【点睛】此题主要考查了完全平方公式,正确将已知变形是解题关键.9、240【分析】观察表格数据可知,y是x的两倍,由此即可求解.【详解】解:第一组数据:x=25,y=50第二组数据:x=40,y=80第三组数据:x=50,y=100第四组数据:x=75,y=150由此可以得到y=2x当x=120是,y=2×120=240故答案为:240.【点睛】本题主要考查了根据表格找到两个变量之间的关系,解题的关键在于能够准确找到等量关系求解.10、52°度【分析】两角互补和为180°,两角互余和为90°,先求出∠A,再用90°-∠A即可解出本题.【详解】解:∵∠A的补角为142°,∴∠A=180°-142°=38°,∴∠A的余角为90°-∠A=90°-38°=52°.故答案为:52°.【点睛】本题考查了余角和补角,解题的关键是熟悉两角互余和为90°,互补和为180°.三、解答题1、(1)a2-b2=(a+b)(a-b);(2)①7;②.【分析】(1)分别表示出图1阴影部分的面积和图2阴影部分的面积,由二者相等可得等式;(2)①将已知条件代入(1)中所得的等式,计算即可;②利用平方差公式将原式的各个因式进行拆分,计算即可.【详解】解:(1)图1阴影部分的面积为a2-b2,图2阴影部分的面积为(a+b)(a-b),二者相等,从而能验证的等式为:a2-b2=(a+b)(a-b),故答案为:a2-b2=(a+b)(a-b);(2)①∵a-b=3,a2-b2=21,a2-b2=(a+b)(a-b),∴21=(a+b)×3,∴a+b=7;②====.【点睛】本题考查了平方差公式的几何背景及其在计算中的应用,熟练掌握平方差公式是解题的关键.2、(1);(2);(3)【分析】任取一张有1万种情况,其中抽到一等奖有10种情况,二等奖有50种情况,三等奖有500种情况,利用概率公式进行计算即可.【详解】解:(1)获一等奖的概率是,(2)获奖的概率是,(3)设需要将无奖券改为三等奖券,则:,解得:.【点睛】本题考查了利用概率公式求概率,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A),难度适中.3、(1)见解析;(2)14【分析】(1)根据轴对称图形的性质画图即可;(2)根据网格结构和割补法进行计算即可求得面积.【详解】解:(1)如图,△A′B′C′即为所求作的三角形;(2)四边形AB′CD的面积为:4×6-×3×5-×4×1-×1×1=24-7.5-2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论