版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期中试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(7小题,每小题2分,共计14分)1、把标号为1,2,3的三个小球放入一个不透明的口袋中,随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球的标号的和大于3的概率是(
)A. B. C. D.2、已知四边形ABCD是平行四边形,下列结论:①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形,其中错误的有(
)A.1个 B.2个 C.3个 D.4个3、如图,为△的中位线,点在上,且;若,则的长为(
)A.2 B.1 C.4 D.34、若一元二次方程的两根为,,则的值是(
)A.4 B.2 C.1 D.﹣25、爷爷的生日晚宴上,大家两两碰杯一次,总共碰杯45次,那么有几人参加了这次宴会?(
)A.8人 B.9人 C.10人 D.11人6、如图,菱形ABCD中,∠ABC=60°,AB=4,E是边AD上一动点,将△CDE沿CE折叠,得到△CFE,则△BCF面积的最大值是(
)A.8 B. C.16 D.7、已知△ABC为等腰三角形,若BC=6,且AB,AC为方程x2﹣8x+m=0两根,则m的值等于()A.12 B.16 C.﹣12或﹣16 D.12或16二、多选题(3小题,每小题2分,共计6分)1、用公式解方程正确的是(
)A. B. C. D.2、已知关于的一元二次方程,下列命题是真命题的有(
)A.若,则方程必有实数根B.若,,则方程必有两个不相等的实根C.若是方程的一个根,则一定有成立D.若是一元二次方程的根,则3、用配方法解下列方程,配方错误的是(
)A.化为 B.化为C.化为 D.化为第Ⅱ卷(非选择题80分)三、填空题(10小题,每小题2分,共计20分)1、已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.2、如图,在矩形中,点分别在上,.只需添加一个条件即可证明四边形是菱形,这个条件可以是______________(写出一个即可).3、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_____.(只填序号)4、如图,在长方形ABCD中,AD=8,AB=6,点E为线段DC上一个动点,把△ADE沿AE折叠,使点D落在点F处,若△CEF为直角三角形时,则DE的长为___.5、为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.6、如图所示,大正方形ABCD内有一小正方形DEFG,对角线DF长为6cm,已知小正方形DEFG向东北方向平移3cm就得到正方形D'E'BG',则大正方形ABCD的面积为____.7、一菱形的对角线长分别为24cm和10cm,则此菱形的周长为________,面积为________.8、一个正方形的面积为,则它的对角线长为________.9、已知一元二次方程ax2+bx+c=0(a≠0),下列结论:①若方程两根为-1和2,则2a+c=0;②若b>a+c,则方程有两个不相等的实数根;③若b=2a+3c,则方程有两个不相等的实数根;④若m是方程的一个根,则一定有b2-4ac=(2am+b)2成立.其中结论正确的序号是__________.10、已知菱形的周长为40,两个相邻角度数之比为1∶2,则较长对角线的长为______.四、解答题(6小题,每小题10分,共计60分)1、今年忠县柑橘喜获丰收,某果园销售的柑橘“忠橙”和“爱媛”很受消费者的欢迎,“忠橙”售价80元/箱,“爱媛”售价60元/箱.在11月第一周“忠橙”的销量比“爱媛”的销量多100箱,且这两种柑橘的总销售额为50000元.(1)在11月第一周,该果园“忠橙”和“爱媛”的销量各为多少箱?(2)为了扩大销售,11月第二周“忠橙”售价降价,销量比第一周培加了,“爱媛”售价不变,销量比第一周增加了,结果这两种相橘第二周的总销售额比第一周的总销售额增加了,求的值2、如图,在▱ABCD中,各内角的平分线相交于点E,F,G,H.(1)求证:四边形EFGH是矩形;(2)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.3、解方程:(1)x(x-3)-5(3-x)=0(2)4、如图,四边形ABCD是菱形,边长为10cm,对角线AC,BD交于点O,∠BAD=60°.(1)求对角线AC,BD的长;(2)求菱形的面积.5、如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF,求证:四边形AECF是菱形.6、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.-参考答案-一、单选题1、D【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号和大于3的情况,再利用概率公式即可求得答案.【详解】解:根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号的和大于3的有6种,∴两次摸出的小球标号的和大于3的概率是,故选:D【考点】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.2、A【解析】【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解:四边形是平行四边形,A、当时,它是菱形,选项不符合题意,B、当时,它是菱形,选项不符合题意,C、当时,它是矩形,选项不符合题意,D、当时,它是矩形,不一定是正方形,选项符合题意,故选:.【考点】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.3、A【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,计算即可.【详解】∵DE为△ABC的中位线,∴DE=BC=5,∵∠AFB=90°,D是AB的中点,∴DF=AB=3,∴EF=DE-DF=2,故选A.【考点】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4、A【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】根据题意得,,所以.故选A.【考点】此题主要考查根与系数的关系,解题的关键是熟知根与系数的性质.5、C【解析】【分析】此题利用基本数量关系:两两碰杯一次,总次数为(n表示人数)列方程解答即可.【详解】解:设有x人参加了这次宴会,根据题意列方程得,,解得x₁=10,x₂=−9(不合题意,舍去),∴有10人参加了这次宴会.故选:C.【考点】此题考查一元二次方程的应用中的基本数量关系:单循环比赛进行的总场数为,依此数量关系推广到一般问题.6、A【解析】【分析】由三角形底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积.【详解】解:在菱形ABCD中,BC=CD=AB=4又∵将△CDE沿CE折叠,得到△CFE,∴FC=CD=4由此,△BCF的底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积∴△BCF面积的最大值是故选:A.【考点】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.7、D【解析】【分析】由△ABC为等腰三角形,BC=6,且AB,AC为方程x2﹣8x+m=0两根,可得两种情况:①BC=6=AB,把6代入方程得36﹣48+m=0②AB=AC,此时方程的判别式为0,分别求解即可.【详解】解:∵△ABC为等腰三角形,若BC=6,且AB,AC为方程x2﹣8x+m=0两根,则①BC=6=AB,把6代入方程得36﹣48+m=0,∴m=12;②AB=AC,此时方程的判别式为0,∴Δ=64﹣4m=0,∴m=16.故m的值等于12或16.故选:D.【考点】本题考查了一元二次方程的判别式和等腰三角形的性质,熟练掌握知识点是解题的关键.二、多选题1、AC【解析】【分析】求出的值,再代入公式求出即可.【详解】∴方程有两个不相等的实数根∴,∴,故选AC.【考点】本题考查了解一元二次方程的应用,能正确利用公式解一元二次方程是解此题的关键.2、ABD【解析】【分析】A正确,利用判别式判断即可.B正确,证明Δ>0,即可判断.C错误,c=0时,结论不成立.D正确,利用求根公式,判断即可.【详解】解:A、当x=2是,4a+2b+c=0,故x=2是方程的根;则方程ax2+bx+c=0必有实数根,A正确,B、∵Δ=b2−4ac=(3a+2)2−4a(2a+2)=9a2+12a+4−8a2−8a=a2+4a+4=(a+2)2,∵a>0,∴Δ>0,∴方程有两个不相等的实数根,故B正确.C、∵若c是方程ax2+bx+c=0的一个根,∴ac2+bc+c=0,∴c(ac+b+1)=0,∴c=0或ac+b+1=0,故C错误.D、∵t是一元二次方程ax2+bx+c=0的根∴t=,∴b2−4ac=(2at+b)2,故D正确,故答案为:A,B,D.【考点】本题考查命题与定理,一元二次方程的根的判别式等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.3、BD【解析】【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1,(3)等式两边同时加上一次项系数一半的平方即可得到结论.【详解】A.化为,正确,不符合题意;B.化为,错误,符合题意;C.化为,正确,不符合题意;D.化为,错误,符合题意.故选:BD.【考点】此题考查了配方法解一元二次方程,属于基础题,熟练掌握配方法的一般步骤是解题关键.三、填空题1、2【解析】【详解】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.2、(答案不唯一)【解析】【分析】由题意易得四边形是平行四边形,然后根据菱形的判定定理可进行求解.【详解】解:∵四边形是矩形,∴,∵,∴四边形是平行四边形,若要添加一个条件使其为菱形,则可添加或AE=CE或CE=CF或AF=CF,理由:一组邻边相等的平行四边形是菱形;故答案为(答案不唯一).【考点】本题主要考查菱形的判定定理、矩形的性质及平行四边形的判定,熟练掌握菱形的判定定理、矩形的性质及平行四边形的判定是解题的关键.3、②【解析】【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解.【详解】解:即,构造如图②中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.故答案为②.【考点】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.4、或8或或【解析】【分析】当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如答图1所示.先利用勾股定理计算出AC=10,根据折叠的性质得∠AFE=∠D=90°,设DE=x,则EF=x,CE=6-x,然后在Rt△CEF中运用勾股定理可计算出x即可.②当点F落在AB边上时,如答图2所示.此时四边形ADEF为正方形,得出DE=AD=8.③当点F落在BC边上时,利用勾股定理即可解决问题;④如图4中,当点F在CB的延长线上时,根据勾股定理列出方程求解即可.【详解】解:∵四边形ABCD是矩形,∴∠D=∠B=90°,CD=AB=6,,当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,F落在AC上,如图1所示.由折叠的性质得:EF=DE,AF=AD=8,设DE=x,则EF=x,CE=6-x,在Rt△CEF中,由勾股定理得:∵EF2+CF2=CE2,∴x2+22=(6-x)2,解得x=,∴DE=;②当点F落在AB边上时,如图2所示.此时ADEF为正方形,∴DE=AD=8.③如图4,当点F落在BC边上时,易知BF,设DE=EF=x,在Rt△EFC中,,,,④如图3中,当点F在CB的延长线上时,设DE=EF=x,则BF,在Rt△CEF中,,解得x=,综上所述,BE的长为或8或或.【考点】本题考查了折叠的性质、矩形的性质、勾股定理、正方形的判定与性质等知识;熟练掌握折叠和矩形的性质是解决问题的关键.5、x(x﹣1)=21【解析】【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.【详解】有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为x(x﹣1)=21.【考点】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6、
cm2【解析】【分析】先求出BD的长,再根据勾股定理求出AB的长,进而可得出结论.【详解】∵DF=6cm,已知小正方形DEFG向东北方向平移3cm就得到正方形D′E′BG′,∴BD=6+3=9.∵四边形ABCD是正方形,∴2AB2=BD2,即AB2=BD2==(cm2).【考点】本题考查的知识点是平移的性质,解题关键是利用正方形性质进行解答.7、
52cm
120cm2【解析】【分析】根据菱形对角线互相平分且垂直得到边长,从而计算出周长,再根据面积公式计算出面积.【详解】解:∵菱形的对角线长分别为24cm和10cm,∴对角线的一半长分别为12cm和5cm,∴菱形的边长为:=13cm,∴菱形的周长为:13×4=52cm,面积为:×10×24=120cm2.故答案为:52cm,120cm2.【考点】此题主要考查学生对菱形的性质的理解及运用,属于基础题,关键是掌握菱形的面积等于对角线乘积的一半.8、【解析】【分析】根据正方形的面积求得正方形的边长,再由勾股定理求得正方形的对角线长即可.【详解】∵正方形的面积为,∴正方形的边长为9cm,∴正方形对角线的长为.故答案为.【考点】本题考查了正方形的性质,熟知正方形的性质是解决问题的关键.9、①③④【解析】【分析】利用根与系数的关系判断①;由Δ=b2-4ac判断②;由判别式可判断③;将x=m代入方程得am2=-(bm+c),再代入=(2am+b)2变形可判断④.【详解】解:若方程两根为-1和2,则=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正确;由b>a+c不能判断Δ=b2-4ac值的大小情况,故②错误;若b=2a+3c,则Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有两个不相等的实数根,故③正确.若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正确;故答案为:①③④.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系及根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.10、【解析】【分析】根据已知可求得菱形的边长及其两内角的度数,证得是等边三角形求得AC的长,再根据勾股定理求得OB的长,进而可得BD的长,即可得到答案.【详解】解:如图,四边形ABCD是菱形,连接AC、BD交于点O.∵两个相邻角度数之比为1∶2∴∵四边形ABCD是菱形∴,∴是等边三角形∴∴∴在中,∴,BD即为最长的对角线.故答案为:.【考点】本题考查等边三角形的判定和性质、勾股定理应用以及菱形性质的综合应用.熟练掌握菱形的性质是关键.四、解答题1、(1)该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)40【解析】【分析】(1)设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,根据等量关系是“忠橙”售价×销量箱数+“爱媛”售价×销量箱数=50000,列方程,解方程即可;(2)根据等量关系是“忠橙”降价后售价×降价后销量箱数+“爱媛”售价×增加后销量箱数=总销售额比第一周的总销售额增加了,列方程,解方程即可.(1)解:设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,由题意得,解得,经检验是原方程的根,.答:该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱.(2)解:由题意得整理,得:,解得:,(不合题意,舍去),答:的值为40.【考点】本题考查列一元一次方程解销售问题应用题,列一元二次方程解应用题,掌握列一元一次方程,一元二次方程解应用题的方法与步骤,抓住等量关系“忠橙”售价×销量箱数+“爱媛”售价×销量箱数=50000列方程是解题关键.2、(1)证明见解析;(2)矩形EFGH的面积=.【解析】【分析】(1)根据角平分线的定义以及平行四边形的性质,即可得出∠AGB=90°,∠DEC=90°,∠AHD=90°=∠EHG,进而判定四边形EFGH是矩形;(2)根据含30°角的直角三角形的性质,得到BGAB=3,AG=3CE,BFBC=2,CF=2,进而得出EF和GF的长,可得四边形EFGH的面积.【详解】(1)∵GA平分∠BAD,GB平分∠ABC,∴∠GAB∠BAD,∠GBA∠ABC.∵▱ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得:∠DEC=90°,∠AHD=90°=∠EHG,∴四边形EFGH是矩形;(2)依题意得:∠BAG∠BAD=30°.∵AB=6,∴BGAB=3,AG=3CE.∵BC=4,∠BCF∠BCD=30°,∴BFBC=2,CF=2,∴EF=3,GF=3﹣2=1,∴矩形EFGH的面积=EF×GF.【考点】本题考查了平行四边形的性质,矩形的判定以及全等三角形的判定与性质的运用,解题时注意:有三个角是直角的四边形是矩形.在判定三角形全等时,关键是选择恰当的判定条件.3、(1);(2).【解析】【分析】根据因式分解法解一元二次方程的方法求解即可.【详解】解:(1)x(x-3)-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年莱芜辅警招聘考试真题含答案详解(精练)
- 2024年三亚辅警招聘考试题库含答案详解(a卷)
- 2024年云南辅警协警招聘考试真题含答案详解(考试直接用)
- 2024年六盘水辅警招聘考试题库及完整答案详解1套
- 2024年孝感辅警招聘考试题库含答案详解(预热题)
- 2024年三门峡辅警招聘考试真题附答案详解(突破训练)
- 2023年鄂州辅警招聘考试题库附答案详解(培优a卷)
- 2024年佛山辅警招聘考试真题完整答案详解
- 2023年鹤壁辅警协警招聘考试真题及答案详解(全优)
- 2024年南充辅警协警招聘考试真题含答案详解(b卷)
- 风管机专业知识培训课件
- GB/T 45065-2024皮革和毛皮化学试验挥发性甲基环硅氧烷残留量的测定
- 2024年度高铁站防水防潮防分包合同2篇
- 浙江省温州环大罗山联盟2024-2025学年高一上学期期中考试化学试题
- 无人机植保技术课件:无人机植保现状
- 代开发票合作合同
- 广东省珠海市文园中学2025届数学七上期末学业质量监测试题含解析
- 中职婴幼儿托育人才培养方案
- 企业数据治理体系和应用场景案例
- 蔡司手术显微镜课件
- 抛光机使用说明书
评论
0/150
提交评论