解析卷人教版8年级数学下册《平行四边形》专项测评试卷(详解版)_第1页
解析卷人教版8年级数学下册《平行四边形》专项测评试卷(详解版)_第2页
解析卷人教版8年级数学下册《平行四边形》专项测评试卷(详解版)_第3页
解析卷人教版8年级数学下册《平行四边形》专项测评试卷(详解版)_第4页
解析卷人教版8年级数学下册《平行四边形》专项测评试卷(详解版)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》专项测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则△AEF的面积为()A.2 B.3 C.4 D.52、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若=10°,则∠EAF的度数为()A.40° B.45° C.50° D.55°3、下面四个命题:①直角三角形的两边长为3,4,则第三边长为5;②,③对角线相等且互相垂直的四边形是正方形;④若四边形中,ADBC,且,则四边形是平行四边形.其中正确的命题的个数为()A.0 B.1 C.2 D.34、如图,在长方形ABCD中,AB=6,BC=8,点E是BC边上一点,将△ABE沿AE折叠,使点B落在点F处,连接CF,当△CEF为直角三角形时,则BE的长是()A.4 B.3 C.4或8 D.3或65、如图,下列条件中,能使平行四边形ABCD成为菱形的是()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在矩形中,,,点是线段上的一点(不与点,重合),将△沿折叠,使得点落在处,当△为等腰三角形时,的长为___________.2、如图,为了测量池塘两岸A,B两点之间的距离,可在AB外选一点C,连接AC和BC,再分别取AC、BC的中点D,E,连接DE并测量出DE的长,即可确定A、B之间的距离.若量得DE=15m,则A、B之间的距离为__________m3、如图,在□中,⊥于点,⊥于点.若,,且的周长为40,则的面积为________.4、如图,四边形ABCD是矩形,延长DA到点E,使AE=DA,连接EB,点F1是CD的中点,连接EF1,BF1,得到△EF1B;点F2是CF1的中点,连接EF2,BF2,得到△EF2B;点F3是CF2的中点,连接EF3,BF3,得到△EF3B;…;按照此规律继续进行下去,若矩形ABCD的面积等于2,则△EFnB的面积为______.(用含正整数n的式子表示)5、如图,将长方形ABCD按图中方式折叠,其中EF、EC为折痕,折叠后、、E在一直线上,已知∠BEC=65°,那么∠AEF的度数是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在矩形中,为对角线.(1)用尺规完成以下作图:在上找一点,使,连接,作的平分线交于点;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若,求的度数.2、如图所示,正方形中,点E,F分别为BC,CD上一点,点M为EF上一点,D,M关于直线AF对称.连结DM并延长交AE的延长线于N,求证:.3、如图,已知矩形中,点,分别是,上的点,,且.(1)求证:;(2)若,求:的值.4、如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.

(1)在方格纸中画出以AB为对角线的正方形AEBF,点E、F在小正方形的顶点上;(2)在方格纸中画出以CD为斜边的等腰直角三角形CDM,连接BM,并直接写出BM的长.5、如图,中,对角线AC、BD相交于点O,点E,F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH.(1)求证:四边形EFGH是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为__________-参考答案-一、单选题1、B【解析】【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,,,由此求解即可.【详解】解:如图所示,连接AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分别是BC,CD的中点,∴,,,∴,故选B.【点睛】本题主要考查了平行四边形的性质,与三角形中线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质.2、A【解析】【分析】可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【详解】解:设∠EAD′=α,∠FAB′=β,根据折叠性质可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四边形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.则∠EAF的度数为40°.故选:A.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.3、B【解析】【分析】①直角三角形两直角边长为3,4,斜边长为5;②x的取值范围不同;③对角线相等且互相垂直平分的四边形是正方形;④熟记平行四边形的判定定理进行证明.【详解】解:①3,4没说是直角边的长还是斜边的长,故第三边答案不唯一,故①错误.②等式左边的值小于0,等式右边的值大于或等于0,故②错误.③必须加上平分这个条件,否则不会是正方形,故③错误.④延长CB至E,使BE=AB,延长AD至F,使DF=DC,则四边形ECFA是平行四边形,∴∠E=∠F,由∠ABC=2∠E,∠ADC=2∠F,知∠ABC=∠ADC,又AD∥BC,故∠ABC+∠BAD=180°,即∠ADC+∠BAD=180°,∴AB∥CD,四边形ABCD是平行四边形.故④正确.故选:B.【点睛】本题考查判断命题正误的能力以及掌握勾股定理,正方形的判定定理,平行四边形的判定定理以及化简代数式注意取值范围等.4、D【解析】【分析】当为直角三角形时,有两种情况:①当点F落在矩形内部时连接,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点A、F、C共线,即沿折叠,使点B落在对角线上的点F处,则,,可计算出然后利用勾股定理求解即可;②当点F落在边上时.此时为正方形,由此即可得到答案.【详解】解:当为直角三角形时,有两种情况:①当点F落在矩形内部时,如图所示.连接,在中,,,∴,∵△ABE沿折叠,使点B落在点F处,∴,BE=EF,当为直角三角形时,只能得到,∴∴点A、F、C共线,即△ABE沿折叠,使点B落在对角线上的点F处,∴,∴,设BE=EF=x,则EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②当点F落在边上时,如图所示,由折叠的性质可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴为正方形,∴,综上所述,BE的长为3或6.故选D.【点睛】本题考查折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质,正方形的性质与判定以及勾股定理.解题的关键是要注意本题有两种情况,需要分类讨论,避免漏解.5、C【解析】【分析】根据菱形的性质逐个进行证明,再进行判断即可.【详解】解:A、▱ABCD中,本来就有AB=CD,故本选项错误;B、▱ABCD中本来就有AD=BC,故本选项错误;C、▱ABCD中,AB=BC,可利用邻边相等的平行四边形是菱形判定▱ABCD是菱形,故本选项正确;D、▱ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定▱ABCD是矩形,而不能判定▱ABCD是菱形,故本选项错误.故选:C.【点睛】本题考查了平行四边形的性质,菱形的判定的应用,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.二、填空题1、或【解析】【分析】根据题意分,,三种情况讨论,构造直角三角形,利用勾股定理解决问题.【详解】解:∵四边形是矩形∴,∵将△沿折叠,使得点落在处,∴,,设,则①当时,如图过点作,则四边形为矩形,在中在中即解得②当时,如图,设交于点,设垂直平分在中即在中,即联立,解得③当时,如图,又垂直平分垂直平分此时重合,不符合题意综上所述,或故答案为:或【点睛】本题考查了矩形的性质,勾股定理,等腰三角形的性质与判定,垂直平分线的性质,分类讨论是解题的关键.2、30【解析】【分析】根据三角形中位线的性质解答即可.【详解】解:∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=30m.故填30.【点睛】本题主要考查的是三角形中位线定理,掌握三角形的中位线平行于第三边且等于第三边的一半是解答本题的关键.3、48【解析】【分析】根据题意可得:,再由平行四边形的面积公式整理可得:,根据两个等式可得:,代入平行四边形面积公式即可得.【详解】解:∵▱ABCD的周长:,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴▱ABCD的面积:,故答案为:48.【点睛】题目主要考查平行四边形的性质及运用方程思想进行求解线段长,理解题意,熟练运用平行四边形的性质及其面积公式是解题关键.4、.【解析】【分析】由AE=DA,点F1是CD的中点,矩形ABCD的面积等于2,结合矩形的性质可得△EF1D和△EAB的面积都等于1,结合三角形中线的性质可得△EF1F2的面积等于,同理可得△EFn﹣1Fn的面积为,△BCFn的面积为22,即可得出结论.【详解】∵AE=DA,点F1是CD的中点,矩形ABCD的面积等于2,∴△EF1D和△EAB的面积都等于1,∵点F2是CF1的中点,∴△EF1F2的面积等于,同理可得△EFn﹣1Fn的面积为,∵△BCFn的面积为22,∴△EFnB的面积为2+1﹣12﹣(1).故答案为:.【点睛】本题考查了矩形的性质,三角形中线的性质,解题的关键是根据面积找出规律.5、25°【解析】【分析】利用翻折变换的性质即可解决.【详解】解:由折叠可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案为:25°.【点睛】本题考查了折叠的性质,熟练掌握折叠的性质是解题的关键.三、解答题1、(1)图形见解析;(2)【分析】(1)利用尺规根据题意即可完成作图;

(2)结合(1)根据等腰三角形的性质和三角形外角定理可得的度数.【详解】(1)如图,点E和点F即为所求;

(2)∵,∠ABD=68°,

∴∠AEB=∠AEB=68°∴∠EAB=180°-68°-68°=44°,

∴∠EAD=90°-44°=46°,

∵AF平分∠DAE,

∴∠FAE=∠DAE=23°,

∴【点睛】题考查了尺规作图-作角平分线,矩形的性质,熟练掌握5种基本作图是解决此类问题的关键.2、见解析【分析】连结,由对称的性质可知,进而可证,即可得,由∠AON=90°,可得.【详解】证明:连结,、关于对称,∴垂直平分,,∴,∴,,在Rt和Rt中,∴,又,∴,∴.【点睛】本题是四边形综合题,主要考查了轴对称的性质,等腰直角三角形的判定,全等三角形的判定与性质,综合性较强,有一定难度.准确作出辅助线是解题的关键.有关45°角的问题,往往利用全等,构造等腰直角三角形,使问题迅速获解.3、(1)见解析;(2)【分析】(1)根据矩形的性质得到,由垂直的定义得到,根据余角的性质得到,根据全等三角形的判定和性质即可得到结论;(2)由已知条件得到,由,即可得到:的值.【详解】(1)∵四边形是矩形,∴,∵,∴,∴,∴,在与中,,∴,∴;(2)∵,∴,∵,∴,∴.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.4、(1)见详解;(2)见详解.【分析】(1)根据勾股定理求出AB的长,以AB为对角线的正方形AEBF,根据正方形的性质求出正方形边长AE=,根据勾股定理构造直角三角形横1竖3,或横3竖1,利用点A平移找到点E,点F即可完成求解;(2)根据勾股定理求出CD的长,△CDM为等腰直角三角形,设CM=DM=x,再利用勾股定理,根据勾股定理构造横1竖2,或横2竖1直角三角形,利用点C平移得到点M,即可得到答案.【详解】(1)根据勾股定理AB=,∵以AB为对角线的正方形AEBF,∴S正方形=,∵正方形AEBF的边长为AE,∴AE2=10,∴AE=,根据勾股定理可知构造横1竖3或横3竖1的直角三角形作线段AE、AF,点A向下平移1格,再向左平移3格得点E,点A向右平移1格,再向下平移3格得点F,∴连结AE,BE,BF,AF,则正方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论