解析卷青岛版8年级数学下册期末试卷附答案详解【巩固】_第1页
解析卷青岛版8年级数学下册期末试卷附答案详解【巩固】_第2页
解析卷青岛版8年级数学下册期末试卷附答案详解【巩固】_第3页
解析卷青岛版8年级数学下册期末试卷附答案详解【巩固】_第4页
解析卷青岛版8年级数学下册期末试卷附答案详解【巩固】_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青岛版8年级数学下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、不等式组的解集是(

)A. B. C. D.2、如图,有一块直角三角形纸片,两直角边,.现将直角边沿直线折叠,使它落在斜边上,且与重合,则的大小为(

)A.2cm B.3cm C.4.8cm D.5cm3、下列计算中,正确的是(

)A. B.C. D.4、如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A. B. C. D.5、无理数的绝对值是(

)A. B. C. D.26、如果关于x的分式方程的解为整数,且关于y的不等式组有解,则符合条件的所有整数a的和为(

)A.-1 B.0 C.1 D.47、下列各点,在正比例函数y=5x图象上的是()A.(1,5) B.(5,1) C.(0.5,﹣2.5) D.(﹣1,5)8、下列图形中,既是轴对称图形,又是中心对称图形的是(

)A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,某自动感应门的正上方A处装着一个感应器,离地面的高度AB为2.5米,一名学生站在C处时,感应门自动打开了,此时这名学生离感应门的距离BC为1.2米,头顶离感应器的距离AD为1.5米,则这名学生身高CD为_____米.2、计算:﹣3﹣1=_____.3、已知关于x的不等式组为,则这个不等式组的解集为_____.4、写出一个小于0的无理数_____.5、设一个三角形的三边分别为a,b,c,p=(a+b+c),则有下列面积公式:S=(秦九韶公式),S=(海伦公式).一个三角形的三边长依次为2,3,4,任选以上一个公式请直接写出这个三角形的面积为_____.6、春节期间,某超市推出了甲、乙、丙三种腊味套盒,各套盒均含有香肠、腊肉、腊排骨、腊猪脚等四种腊味各若干袋,每袋腊味的重量为500克,一袋腊肉的售价不低于30元,一袋香肠的售价比一袋腊肉的售价贵,单袋腊味的售价均为整数元,套盒的售价即为单袋腊味的售价之和,甲套盒中含有香肠2袋,腊肉5袋,腊排骨2袋,腊猪脚2袋,乙套盒中含有香肠4袋,腊肉5袋,腊排骨1袋,腊猪脚1袋,丙套盒中含有香肠3袋,腊肉5袋,腊排骨2袋,腊猪脚1袋,甲、乙礼盒售价均为415元,丙礼盒售价比甲礼盒贵10元,则腊排骨每袋______元.7、如果代数式意义,那么x的取值范围是_______.三、解答题(7小题,每小题10分,共计70分)1、已知:如图,一次函数的图像分别与x轴、y轴相交于点A、B,且与经过x轴负半轴上的点C的一次函数y=kx+b的图像相交于点D,直线CD与y轴相交于点E,E与B关于x轴对称,OA=3OC.(1)直线CD的函数表达式为______;点D的坐标______;(直接写出结果)(2)点P为线段DE上的一个动点,连接BP.①若直线BP将△ACD的面积分为两部分,试求点P的坐标;②点P是否存在某个位置,将△BPD沿着直线BP翻折,使得点D恰好落在直线AB上方的坐标轴上?若存在,求点P的坐标;若不存在,请说明理由.2、某邮递公司收费方式有两种:方式一:邮递物品不超过3千克,按每千克2元收费;超过3千克,3千克以内每千克2元,超过的部分按每千克1.5元收费.方式二:基础服务费4元,另外每千克加收1元.小王通过该邮递公司邮寄一箱物品的质量为x千克(x>3).(1)请分别直接写出小王用两种付费方式所需的邮递费用y(元)与x(千克)之间的函数关系式,并在如图所示的直角坐标系中画出图象;(2)若两种付费方式所需邮递费用相同,求这箱物品的质量;(3)若采用“方式二”所需要邮递费用比采用“方式一”便宜5元,求这箱物品的质量.3、如图,已知Rt△ABC中,∠B=90°,∠A=30°,请用尺规作图法,在AC边上求作一点D,使BD=AC.(保留作图痕迹,不写作法)4、我校为了丰富校园活动,计划购买乒乓球拍和羽毛球拍共100副,其中乒乓球拍每副50元,羽毛球拍每副100元,(1)若购买两种球拍刚好用去8000元,则购买两种球拍各多少副?(2)若购买羽毛球拍的数量不少于乒乓球拍的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.5、某学校为进一步做好疫情防控工作,计划购进A,B两种口罩.已知每箱A种口罩比每箱B种口罩多10包,每箱A种口罩和每箱B种口罩的价格分别是630元和600元,而每包A种口罩和每包B种口罩的价格分别是这一批口罩平均每包价格的0.9倍和1.2倍.(1)求这一批口罩平均每包的价格是多少元.(2)如果购进A,B两种口罩共5500包,最多购进3500包A种口罩,为了使总费用最低,应购进A种口罩和B种口罩各多少包?总费用最低是多少元?6、已知:如图,线段a和∠α.求作:矩形ABCD,使AB=a,∠CAB=∠α.7、如图,在△ABC中,∠ACB=90°.(1)在斜边AB上找一点P,使点P到AC的距离等于BP的长.请用无刻度直尺和圆规作出点P(不写画法,保留作图痕迹);(2)若BC=4.5,AB=7.5,则AC的长为_______,(1)中BP的长为_______.-参考答案-一、单选题1、C【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:x+3>0解不等式①得:,解不等式②得:,不等式组的解集是,故选:C.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.2、B【解析】【分析】根据折叠的性质可得AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,利用勾股定理列式求出AB,从而求出BE,设CD=DE=x,表示出BD,然后在Rt△DEB中,利用勾股定理列式计算即可得解.【详解】解:由折叠的性质可得,AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,在Rt△ABC中,AB2=AC2+BC2=62+82=102,∴AB=10,∴BE=AB-AE=10-6=4,设CD=DE=x,则DB=BC-CD=8-x,在Rt△DEB中,由勾股定理,得x2+42=(8-x)2,解得x=3,即CD=3cm,故选:B.【点睛】本题考查了翻折变换的性质,以及勾股定理,熟记性质并表示出Rt△DEB的三边,然后利用勾股定理列出方程是解题的关键.3、B【解析】【分析】根据二次根式的混合运算法则可以计算出各个选项中的正确结果,从而可以判断哪个选项中的式子是正确的.【详解】解:A、、不是同类二次根式,不能合并,故该选项错误,不符合题意;B、,故该选项正确,符合题意;C、、不是同类二次根式,不能合并,故该选项错误,不符合题意;D、,故该选项错误,不符合题意;故选:B【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解答本题的关键.4、A【解析】【分析】根据两函数图象交点坐标为两函数解析式组成的方程组的解,即可求解.【详解】解:关于x,y的方程组可化为,∵两个一次函数图象的交点坐标为(2,4),∴方程组的解为.故选:A【点睛】本题主要考查了一次函数图象交点坐标与二元一次方程组的解得关系,熟练掌握两函数图象交点坐标为两函数解析式组成的方程组的解是解题的关键.5、B【解析】【分析】根据绝对值的定义来求解即可.【详解】解:无理数的绝对值是.故选:.【点睛】本题考查了算术平方根,无理数,实数的性质,正确理解负数的绝对值是正数是解答关键.6、A【解析】【分析】先解分式方程,根据分式方程有整数解求解的值,再根据一元一次不等式组有解,求解的取值范围,从而可得答案.【详解】解:关于x的分式方程的解为整数,则或解得:或或或又则即所以或或由①得:由②得:关于y的不等式组有解,综上:或符合条件的所有整数a的和为故选A【点睛】本题考查的是分式方程的整数解,根据一元一次不等式组有解求解参数的取值范围,掌握“解分式方程及分式方程的整数解的含义,一元一次不等式组有解的含义”是解本题的关键.7、A【解析】【分析】将点的坐标代入函数解析式,验证是否成立即可.【详解】解:当时,,∴(1,5)在图象上,故选项A符合题意;;当时,,∴(5,1)不在图象上;故选项B不合题意;当时,,∴(0.5,-2.5)不在图象上;故选项C不合题意;当时,,∴(-1,5)不在图象上;故选项D不合题意;故选择A.【点睛】本题考查了正比例函数图象上点的坐标特征,解题的关键是掌握图像上任意一点的坐标都满足函数关系式.8、C【解析】【详解】A、中心对称图形,不符合题意;B、轴对称图形,不符合题意;C、轴对称图形,又是中心对称图形,符合题意;D、轴对称图形,不符合题意;故点C.【点睛】本题考查轴对称图形与中心对称图形的定义,轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫轴对称图形;中心对称图形的概念:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与原来的图形重合,这个图形称为中心对称图形.熟悉轴对称图形和中心对称图形的概念是本题的解题关键.二、填空题1、1.6【解析】【分析】过点D作DE⊥AB于E,则CD=BE,DE=BC=1.2米,由勾股定理得出AE=0.9(米),则BE=AB-AE=1.6(米),即可得出答案.【详解】解:过点D作DE⊥AB于E,如图所示:则CD=BE,DE=BC=1.2米=米,在Rt△ADE中,AD=1.5米=米,由勾股定理得:AE==0.9(米),∴BE=AB-AE=2.5-0.9=1.6(米),∴CD=BE=1.6米,故答案为:1.6.【点睛】本题考查了勾股定理的应用,正确作出辅助线构造直角三角形是解题的关键.2、-1【解析】【分析】根据立方根和负整数指数幂的计算法则求解即可.【详解】解:,故答案为:-1.【点睛】本题主要考查了立方根和负整数指数幂,熟知相关计算法则是解题的关键.3、【解析】【分析】分别求出两个不等式的解集,即可求解.【详解】解:,解不等式①,得x≤﹣,解不等式②,得x,所以不等式组的解集是x,故答案为:x.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解一元一次不等式组的基本方法是解题的关键.4、-π(答案不唯一)【解析】【分析】根据实数的大小比较和无理数的定义写出即可.【详解】解:∵π>0,∴-π<0,故答案为:-π(答案不唯一).【点睛】本题考查了无理数的定义和实数的大小比较,能熟记无理数的定义的内容是解此题的关键.5、##【解析】【分析】选取海伦公式进行计算,根据公式将三边长以及的值代入求解即可.【详解】解:∵一个三角形的三边长依次为2,3,4,∴p=S=故答案为:【点睛】本题考查了二次根式的混合运算,正确的计算是解题的关键.6、50【解析】【分析】设香肠、腊肉、腊排骨、腊猪脚四种腊味的单价分别为每袋元,元,元,元,再列方程组,分别用含的代数式再利用都为正整数,且求解的范围,从而可得答案.【详解】解:设香肠、腊肉、腊排骨、腊猪脚四种腊味的单价分别为每袋元,元,元,元,则由①②得:由②③得:则把代入①可得:都为正整数,且当时,则或当时,不合题意,舍去,当时,符合题意,此时,所以:腊排骨每袋50元.故答案为:50【点睛】本题考查的是方程组的应用,方程组的正整数解问题,一元一次不等式组的应用,熟练的利用方程组与不等式组解决实际问题是解本题的关键.7、且【解析】【分析】根据分式的分母不等于零和二次根式的被开方数是非负数进行解答.【详解】解:∵二次根式的被开方数是非负数,∴,解得.又∵分母不等于零,∴,∴且.故答案是:且.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,解答本题的关键是分式的分母不等于零和二次根式的被开方数是非负数.三、解答题1、(1),(-4,-6)(2)①点坐标为或;②存在,点坐标为或【解析】【分析】(1)由求出与的交点坐标,进而得到E,C两点坐标,然后代入,求解的值,进而可得直线CD的函数表达式;D点为直线AB与直线CD的交点,联立方程组求解即可.(2)①分情况求解:情况一,如图1,当P在CD上,设,过B作轴交CD于点M,将代入求解得到点M的坐标,根据,求解的值,进而得到点坐标;情况二,如图2,当P在CE上,设PB与x轴交于G,根据,解得的值,得到点坐标,设直线的解析式为,将B,G点坐标代入求解的值,得直线的解析式,P为直线与直线CD的交点,联立方程组求解即可.②分情况求解:情况一,如图3,当D落在x轴上(记为)时,作DH⊥y轴于点H,BH=OB=3,由翻折可知,,证明,,可得,PB∥x轴,可得P点纵坐标,代入解析式求解即可得点的坐标;情况二,如图4,当D落在y轴上(记为)时,作PM⊥BD,PN⊥OB,由翻折可知:,证明,有PM=PN,由,,,解得的值,将代入中得的值,即可得到点坐标.(1)解:将代入得∴点B的坐标为将代入得,解得∴点A的坐标为∴由题意知点E,C坐标分别为,将E,C两点坐标代入得解得:∴直线CD的函数表达式为;联立方程组解得∴D点坐标为;故答案为:;.(2)①解:分情况求解,情况一,如图1,当P在CD上,设,过B作轴交CD于点M∴将代入中得解得∴点M的坐标为由题意得∴解得∴点坐标为;情况二,如图2,当P在CE上,设PB与x轴交于G由题意知:解得∴点坐标为设直线的解析式为将B,G点坐标代入得解得∴直线的解析式为联立方程组解得∴点P的坐标为;综上所述,点P的坐标为或.②解:分情况求解:情况一,如图3,当D落在x轴上(记为)时,作DH⊥y轴于点H∴BH=OB=3由翻折可得:,∵°在和中∴∴∵∴∴°∴PB∥x轴∴P点纵坐标为将代入中得解得∴点的坐标为;情况二,如图4,当D落在y轴上(记为)时,作PM⊥BD于M,PN⊥OB于N由翻折可得:在和中∴∴PM=PN∵,,∴解得将代入中得解得∴点坐标为;综上所述,存在点,且点坐标为或.【点睛】本题考查了一次函数的解析式,翻折的性质,全等三角形的判定与性质,解二元一次方程组.解题的关键在于对知识的灵活运用.2、(1),,见解析(2)5千克(3)15千克【解析】【分析】(1)根据题意,可以写出两种付费方式所需的邮递费用y(元)与x(千克)之间的函数关系式,并在直角坐标系中画出图象;(2)根据题意和(1)中的函数解析式,令它们的函数值相等,求出相应的x的值即可;(3)根据题意,可以列出相应的方程,然后求解即可.(1)由题意可得,方式一:所需的邮递费用y(元)与x(千克)之间的函数关系式是y=3×2+(x−3)×1.5=1.5x+1.5,当x=4时,y=7.5,当x=5时,y=9;方式二:所需的邮递费用y(元)与x(千克)之间的函数关系式是y=x+4,当x=4时,y=8,当x=5时,y=9;它们的函数图象如图所示:(2)由题意可得:1.5x+1.5=x+4,解得x=5,答:两种付费方式所需邮递费用相同,这箱物品的质量是5千克.(3)由题意可得:(1.5x+1.5)−(x+4)=5,解得x=15,答:这箱物品的质量是15千克.【点睛】本题考查一次函数的应用、一元一次方程的应用,解答本题的关键是明确题意,写出相应的函数解析式,列出相应的方程.3、见解析【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半知D为AC的中点,故只需作AC的垂直平分线即可.【详解】解:如图,点D即为所求作.【点睛】本题考查尺规作图-作线段垂直平分线,涉及直角三角形斜边上的中线性质,熟练掌握线段垂直平分线的作图方法以及直角三角形斜边上的中线性质是解答的关键.4、(1)购买乒乓球40副,羽毛球60副;(2)购买乒乓球50副,羽毛球50副时所需总费用最低,该购买方案所需总费用为7500元【解析】【分析】(1)设购买乒乓球a副,则购买羽毛球(100-a)副,根据购买两张球拍刚好用去8000元列方程求解即可;(2)设购买乒乓球x副,则购买羽毛球(100-x)副,先根据题意求得x的取值范围,再根据一次函数的增减性求解即可.(1)解:设购买乒乓球a副,则购买羽毛球(100-a)副,根据题意,得:50a+100(100-a)=8000,解得:a=40,100-40=60(副),答:购买乒乓球40副,羽毛球60副;(2)解:设购买乒乓球x副,则购买羽毛球(100-x)副,设总费用为W元,∵购买羽毛球拍的数量不少于乒乓球拍的数量,∴100-x≥x,解得:x≤50,设总费用为W元,根据题意,W=50x+100(100-x)=-50x+10000,∵-50<0,∴W随x的增大而减小,∴当x=50时,W最小,最小值为-50×50+10000=7500元,答:购买乒乓球50副,羽毛球50副时所需总费用最低,该购买方案所需总费用为7500元.【点睛】本题考查一元一次方程的应用、一元一次不等式的应用、一次函数的应用,理解题意,找准等量关系是解答的关系.5、(1)20元(2)购进A种口罩3500包,B种口罩2000包时,能使总费用最低,总费用最低是111000元.【解析】【分析】(1)设这一批口罩平均每包的价格是x元,根据“每箱A种口罩比每箱B种口罩多10包,每箱A种口罩和每箱B种口罩的价格分别是630元和600元,而每包A种口罩和每包B种口罩的价格分别是这一批口罩平均每包价格的0.9倍和1.2倍”列分式方程解答即可;(2)设购进A种口罩t包,这批口罩的总费用为w元,根据题意得出w与t的函数关系式,再根据t的取值范围以及一次函数的性质解答即可.(1)解:设这一批口罩平均每包的价格是x元,根据题意得:,解得x=20,经检验,x=20是原方程的解,并符合题意,答:这一批口罩平均每包的价格是20元;(2)解:由(1)可知,A种口罩每包价格为20×0.9=18(元),B种口罩每包价格为20×1.2=24(元),设购进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论