 
         
         
         
         
        版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、如图,在正方形网格上有5个三角形(三角形的顶点均在格点上):①△ABC,②△ADE,③△AEF,④△AFH,⑤△AHG,在②至⑤中,与①相似的三角形是(
)A.②④ B.②⑤ C.③④ D.④⑤2、如图,点A与点B关于原点对称,点C在第四象限,∠ACB=90°.点D是轴正半轴上一点,AC平分∠BAD,E是AD的中点,反比例函数()的图象经过点A,E.若△ACE的面积为6,则的值为(
)A. B. C. D.3、在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个 B.5个 C.6个 D.7个4、关于的一元二次方程的两根应为(
)A. B., C. D.5、直角三角形的面积为,斜边上的中线为,则这个三角形周长为(
)A. B.C. D.6、如图,为△的中位线,点在上,且;若,则的长为(
)A.2 B.1 C.4 D.3二、多选题(6小题,每小题2分,共计12分)1、如图,点P在函数(x>0,k>2,k为常数)的图象上,PC⊥x轴交的图象于点A,PD⊥y轴于点D,交,当点P在(x>0,k>2,k为常数)的图象上运动时(
)A.ODB与OCA的面积相等 B.四边形PAOB的面积不会发生变化C.PA与PB始终相等 D.2、F,且CE:AC=1:则下列结论正确的有(
)A.△CBE≌△CDEB.DE=FEC.AE=BED.S△BEF=S四边形ABCD2.具备下列各组条件的两个三角形中,一定相似的是(
)A.有一个角是40°的两个等腰三角形 B.两个等腰直角三角形C.有一个角为100°的两个等腰三角形 D.两个等边三角形3、平行四边形ABCD的对角线相交于点O,分别添加下列条件使得四边形ABCD是矩形的条件有(
)是菱形的条件有(
)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO4、下列关于x的方程的说法正确的是()A.一定有两个实数根 B.可能只有一个实数根C.可能无实数根 D.当时,方程有两个负实数根5、如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论中正确的是(
)A.S△ADB=S△ADC;B.当0<x<3时,y1<y2;C.如图,当x=3时,EF=;D.当x>0时,y1随x的增大而增大,y2随x的增大而减小.6、如图,在△ABC中,点D在边AC上,下列条件中,不能判断△BDC与△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、已知菱形的边长为,两条对角线的长度的比为3:4,则两条对角线的长度分别是_____________.2、关于的方程有两个不相等的实数根,则的取值范围是________.3、据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程__________.4、如图,矩形ABCD中,AB=6,BC=8,对角线BD的垂直平分线EF交AD于点E、交BC于点F,则线段EF的长为__.5、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件衬衫降价x元,由题意列得方程______.6、“降次”是解一元二次方程的基本思想,用这种思想解高次方程x3-x=0,它的解是_____________.7、如图,在边长为1的正方形ABCD中,等边△AEF的顶点E、F分别在边BC和CD上则下列结论:①CE=CF:②∠AEB=75°;③S△EFC=1;④,其中正确的有______(用序号填写)8、已知方程x2﹣3x+1=0的根是x1和x2,则x1+x2﹣x1x2=___.四、解答题(6小题,每小题10分,共计60分)1、如图1,正方形ABCD中,AB=5,点E为BC边上一动点,连接AE,以AE为边,在线段AE右侧作正方形,连接CF、DF.设.(当点E与点B重合时,x的值为0),.小明根据学习函数的经验,对函数随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、测量、观察、计算,得到了x与y1、y2的几组对应值;x0123455.004.123.614.125.0001.412.834.245.657.07(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,并画出函数y1,y2的图象;(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为cm.2、如图,Rt△ABO的顶点A是反比例函数的图象与一次函数的图象在第二象限的交点,AB⊥x轴于点B,且.(1)求反比例函数和一次函数的解析式;(2)求一次函数与反比例函数图象的两个交点A,C的坐标.3、如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=;DP=;BQ=;CQ=.(2)当t为何值时,四边形APQB是平行四边形?(3)当t为何值时,四边形PDCQ是平行四边形?4、如图,一次函数y1=ax+b与反比例函数的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围;(3)点P是x轴上一点,当时,请求出点P的坐标.5、已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都为正整数,求这个方程的根.6、圆周率是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对有过深入的研究.目前,超级计算机已计算出的小数部分超过31.4万亿位.有学者发现,随着小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.
(1)从的小数部分随机取出一个数字,估计数字是6的概率为________;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)-参考答案-一、单选题1、A【解析】【分析】根据两边成比例夹角相等两三角形相似即可判断.【详解】解:由题意:①②④中,∠ABC=∠ADE=∠AFH=135°,又∵,∴,,∴△ABC∽△ADE∽△HFA,故选:A.【考点】本题考查相似三角形的判定,解题的关键是理解题意,灵活运用所学知识解决问题.2、C【解析】【分析】过A作,连接OC、OE,根据点A与点B关于原点对称,∠ACB=90°,AC平分∠BAD得出,从而得出三角形AEC的面积与三角形AOE的面积相等,设,根据E是AD的中点得出得出三角形OAE的面积等于四边形AFGE的面积建立等量关系求解.【详解】解:过A作,连接OC,连接OE:∵点A与点B关于原点对称,∠ACB=90°∴又∵AC平分∠BAD∴∴∴设,根据E是AD的中点得出:∴解得:故答案选:C.【考点】本题考查反比例函数与几何综合,有一定的难度.将三角形AEC的面积转化与三角形AOE的面积相等是解题关键.3、C【解析】【分析】根据题意,得出ABC的三边之比,并在直角坐标系中找出与ABC各边长成比例的相似三角形,并在直角坐标系中无一遗漏地表示出来.【详解】解:ABC的三边之比为,如图所示,可能出现的相似三角形共有以下六种情况:所以使得△ADE∽△ABC的格点三角形一共有6个,故选:C.【考点】本题考察了在直角坐标系中画出与已知三角形相似的图形,解题的关键在于找出与已知三角形各边长成比例的三角形,并在直角坐标系中无一遗漏地表示出来.4、B【解析】【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程即可.【详解】x2−3ax+a2=0,△=(−3a)2−4××a2=a2,x=.所以x1=a,x2=a.故答案选B.【考点】本题考查了解一元二次方程,解题的关键是根据公式法解一元二次方程.5、D【解析】【分析】根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.【详解】解:设直角三角形的两条直角边分别为x、y,∵斜边上的中线为d,∴斜边长为2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面积为S,∴,则2xy=4S,即(x+y)2=4d2+4S,∴∴这个三角形周长为:,故选D.【考点】本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6、A【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,计算即可.【详解】∵DE为△ABC的中位线,∴DE=BC=5,∵∠AFB=90°,D是AB的中点,∴DF=AB=3,∴EF=DE-DF=2,故选A.【考点】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、多选题1、AB【解析】【分析】由反比例函数k的几何意义可判断出各个结论的正误.【详解】解:A.∵点A,B在函数的图象上,∴,故选项A正确;B.∵矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化;故此选项正确.C.PA与PB不一定相等,只有当四边形OCPD是正方形时满足PA=PB,故此选项不正确;D.∵A、B在上,∴S△AOC=S△BOE,∴•OC•AC=•OD•BD,∴OC•AC=OD•BD,∵OC=PD,OD=PC,∴PD•AC=DB•PC,∴.故此选项不正确.故选AB【考点】此题是反比例函数综合题,主要考查了反比例函数(k≠0)中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.2、BCD【解析】【分析】根据相似三角形的判定方法一一判断即可.【详解】A.有一个角是40°的两个等腰三角形,当40°的角为等腰三角形的底角,当40°的角为等腰三角形顶角,两个三角形内角分别为40°、40°、100°和40°、70°、70°,则两三角形不相似,故选项A不合题意B.等腰直角三角形的内角均为45°,45°,90°,根据三角形相似判定方法等腰直角三角形有两组角对应相等,两个三角形相似,一定相似,故选项B符合题意;C.∵100°>90°,∴100°的角只能是等腰三角形的顶角,另两个角分别为40°,40°,根据三角形相似判定定理,有两组角对应相等的三角形相似,故选项C符合题意;D.∵等边三角形的内角都是60°,根据三角形相似判定定理,两个等边三角形有两个角对应相等,两个三角形相似,故选项D符合题意.故选:BCD.【考点】考查相似三角形的判定方法,掌握相似三角形判定的4种方法是解题的关键.3、AEBCD【解析】【分析】因为四边形ABCD是平行四边形,要成为矩形加上一个角为直角或对角线相等即可;要使其成为菱形,加上一组邻边相等或对角线垂直均可.【详解】A选项:∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形.(有一个角是直角的平行四边形是矩形)B选项:∵AC⊥BD,四边形ABCD是平行四边形,∴四边形ABCD是菱形.(对角线互相垂直的平行四边形是菱形)C选项:∵AB=BC,四边形ABCD是平行四边形,∴四边形ABCD是菱形.(邻边相等的平行四边形是菱形)D选项:如图:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴▱ABCD是菱形;E选项:∵AO=DO,四边形ABCD是平行四边形,∴AC=BD,∴四边形ABCD是矩形.(对角线互相平分且相等的平行四边形是矩形)故选:AE,BCD.【考点】考查了菱形和矩形的判定,解题关键是掌握平行四边形的性质和菱形、矩形的判定方法.4、BD【解析】【分析】直接利用方程根与系数的关系以及根的判别式分析求出即可.【详解】解:当a=0时,方程整理为解得,∴选项B正确;故选项A错误;当时,方程是一元二次方程,∴∴此时的方程表两个不相等的实数根,故选项C错误;若时,,∴当时,方程有两个负实数根∴选项D正确,故选:BD【考点】此题主要考查了一元二次方程根的判别式和根与系数的关系,正确把握相关知识是解题关键.5、ACD【解析】【分析】对于直线解析式,分别令x与y为0求出y与x的值,确定出A与B坐标,利用AAS得到三角形OBA与三角形CDA全等,利用全等三角形对应边相等得到,确定出C坐标,代入反比例解析式求出k的值,确定出反比例解析式,由图象判断时x的范围,以及与的增减性,把分别代入直线与反比例解析式,相减求出EF的长,即可做出判断.【详解】解:对于直线,令,得到;令,得到,,,即,,在和中,,,,(同底等高三角形面积相等),选项A正确;,把C点坐标代入反比例解析式得:,即,由函数图象得:当时,,选项B错误;当时,,,即,选项C正确;当时,随x的增大而增大,随x的增大而减小,选项D正确.故选:ACD.【考点】此题考查了反比例函数与一次函数的交点,涉及的知识有:一次函数与坐标系的交点,待定系数法确定反比例函数解析式,坐标与图形性质以及反比例函数的性质,熟练掌握函数的性质是解本题的关键.6、ABD【解析】【分析】根据三角形相似的判断方法逐个判断即可.【详解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合题意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合题意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故选项不符合题意;D、BD2=CD·DA,不能判定△BDC与△ABC,符合题意;故选:ABD.【考点】此题考查了三角形相似的判定方法,解题的关键是熟练掌握三角形相似的判定方法.三、填空题1、,【解析】【分析】如图BD:AC=3:4,AB=10cm,设BD=3x,则AC=4x,根据菱形的性质,DO=BO=,AO=CO=2x,在RtΔAOD中,AD2+DO2+AO2,,求出x,BD=3x,AC=4x即可.【详解】如图BD:AC=3:4,AB=10cm,设BD=3x,则AC=4x,根据菱形的性质,DO=BO=,AO=CO=2x,AC垂直BD在RtΔAOD中,AD2+DO2+AO2,,x=4,AC=4×4=16,BD=3×4=12,则两条对角线的长度分别是12cm,16cm.故答案为:12cm,16cm.【考点】本题考查菱形的对角线问题,掌握菱形的性质,利用对角线之间的关系,和勾股定理构造方程是解题关键.2、且【解析】【分析】若一元二次方程有两个不相等的实数根,则△=b2-4ac>0,建立关于k的不等式,求得k的取值范围,还要使二次项系数不为0.【详解】∵方程有两个不相等的实数根,∴解得:,又二次项系数故答案为且【考点】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.3、【解析】【分析】根据题意,第一季度地区生产总值平均增长率第三季度地区生产总值,按照数量关系列方程即可得解.【详解】解:根据题意,第一季度地区生产总值平均增长率第三季度地区生产总值列方程得:,故答案为:.【考点】本题主要考查了增长率的实际问题,熟练掌握相关基本等量关系是解决本题的关键.4、【解析】【分析】根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出EF即可.【详解】解:如下图,∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴,∴,解得,OF,∵四边形ABCD是矩形,∴ADBC,∠A=90°,∴∠EDO=∠FBO,∵EF是BD的垂直平分线,∴BO=DO,EF⊥BD,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴EF=2OF,故答案为:.【考点】本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,解题的关键是掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义.5、【解析】【分析】设每件衬衫降价x元,根据每件衬衫每降价1元,商场平均每天可多售出2件可得销售量为,则每件衬衫的利润为,根据销售量乘以每件衬衫的利润等于1200元,列出一元二次方程即可【详解】解:设每件衬衫降价x元,根据题意得,故答案为:【考点】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.6、【解析】【分析】先把方程的左边分解因式,再化为三个一次方程进行降次,再解一次方程即可.【详解】解:则或或解得:故答案为:【考点】本题考查的是利用因式分解的方法把高次方程转化为一次方程,掌握“因式分解的方法与应用”是解本题的关键.7、①②④【解析】【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据等边三角形的边长求得直角三角形的边长,从而求得面积③的正误,根据勾股定理列方程可以判断④的正误.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;∵正方形ABCD的边长为1,③说法错误,∵∠AEB=75°,∠AEF=60°,∴∠CEF=45°,∴△CEF是等腰直角三角形,设BE=DF=x,∴CE=CF=1-x,(不合题意,舍去),∴EF=;④说法正确;∴正确的有①②④.故答案为①②④.【考点】本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大.8、2【解析】【分析】根据根与系数的关系可得出x1+x2=3、x1x2=1,将其代入x1+x2﹣x1x2中即可求出结论.【详解】解:∵方程x2﹣3x+1=0的两个实数根为x1、x2,∴x1+x2=3、x1x2=1,∴x1+x2﹣x1x2=3﹣1=2,故答案为:2.【考点】本题考查了根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.四、解答题1、(1)见解析;(2)见解析;(3)2.59.【解析】【分析】(1)画图、测量可得;(2)依据表中的数据,描点、连线即可得;(3)由题意得出△CDF是等腰三角形时BE的长度即为y1与y2交点的横坐标,据此可得答案.【详解】(1)补全表格如下:x012345y15.04.123.613.614.125.00y201.412.834.245.657.07(2)函数图象如下:(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为2.5906,故答案为2.59.【考点】本题是四边形的综合问题,解题的关键是掌握函数思想的运用及函数图象的画法、数形结合思想的运用.2、(1),;(2)A(-1,6),C(6,-1).【解析】【分析】(1)先根据反比例函数的图象所在的象限判断出k的符号,在由△ABO的面积求出k的值,进而可得出两个函数的解析式;(2)把两函数的解析式组成方程组,求出x、y的值,即可得出A、C两点的坐标.【详解】(1)∵AB⊥x轴于点B,且,∴,∴.∵反比例函数图象在第二、四象限,∴,∴,∴反比例函数的解析式为,一次函数的解析式为;(2)由,解得,或,∴A(-1,6),C(6,-1).【考点】本题考查了反比例函数比例系数k的几何意义及应用,反比例函数与一次函数的交点问题,能根据△ABO的面积求出k的值是解答此题的关键.3、(1)t,12﹣t,15﹣2t,2t(2)t=5s时四边形APQB是平行四边形(3)当t=4s时,四边形PDCQ是平行四边形【解析】【分析】(1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,DP,BQ,CQ的长;(2)当AP=BQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;(3)当PD=CQ时,四边形PDCQ是平行四边形;建立关于t的一元一次方程方程,解方程求出符合题意的t值即可.【详解】解:(1)AP=t,DP=12﹣t,BQ=15﹣2t,CQ=2t;(2)根据题意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.∵AD∥BC,∴当AP=BQ时,四边形APQB是平行四边形,∴t=15﹣2t,解得t=5,∴t=5s时四边形APQB是平行四边形;(3)由AP=tcm,CQ=2tcm
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 送礼打卡活动方案
- 超市惠民活动策划方案
- 超市果蔬活动策划方案
- 萧县社区植树活动方案
- 邪教宣传活动方案
- 运输公司拔河活动方案
- 读红色经典活动方案
- 资产新规基金从业考试及答案解析
- 2025年数字媒体营销师职业资格考试《数字营销策略与执行》备考题库及答案解析
- 2025年注册咨询工程师考试试题及答案宝典
- 2024年9月电工三级试题与答案
- 科室消防培训课件
- 2025及未来5年中国花卉肥市场调查、数据监测研究报告
- SF-36健康调查简表标准化操作手册(2025年更新版)
- 职业生涯规划计划书(34篇)
- 服装工厂干货知识培训课件
- 一汽丰田销售流程
- 荣县2025年度公开招聘社区专职工作人员(8人)笔试备考试题及答案解析
- 黑龙江省 2025 年专升本英语全真模拟卷
- 浙江南海实验高中2025年秋9月月考高一数学试题+答案(9月29日)
- 责任制整体护理持续改进
 
            
评论
0/150
提交评论