解析卷冀教版8年级下册期末试卷标准卷附答案详解_第1页
解析卷冀教版8年级下册期末试卷标准卷附答案详解_第2页
解析卷冀教版8年级下册期末试卷标准卷附答案详解_第3页
解析卷冀教版8年级下册期末试卷标准卷附答案详解_第4页
解析卷冀教版8年级下册期末试卷标准卷附答案详解_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版8年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是()A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD2、下列说法正确的是()A.只有正多边形的外角和为360°B.任意两边对应相等的两个直角三角形全等C.等腰三角形有两条对称轴D.如果两个三角形一模一样,那么它们形成了轴对称图形3、平面直角坐标系中,点的坐标为,一次函数的图像与轴、轴分别相交于点、,若点在的内部,则的取值范围为()A.或 B. C. D.4、如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,再以△AB2C2各边的中点为顶点作△A3B3C3,…如此下去,则△AnBnCn的周长为()A.a B.a C.a D.a5、在平面直角坐标系中,A(2,3),O为原点,若点B为坐标轴上一点,且△AOB为等腰三角形,则这样的B点有()A.6个 B.7个 C.8个 D.9个6、在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆一定与()A.x轴相交 B.y轴相交 C.x轴相切 D.y轴相切7、平面直角坐标系中,点到y轴的距离是()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、点关于y轴的对称点的坐标为________.2、已知点A(a,-3)与点B(3,b)关于y轴对称,则a+b=_____________________.3、如图,矩形中,,,以点为中心,将矩形旋转得到矩形,使得点落在边上,则的度数为__________.4、已知点,是关于x轴对称的点,______.5、直线y=2x-4与两坐标轴围成的三角形面积为___________________.6、如图,平行四边形ABCD中,BD为对角线,,BE平分交DC于点E,连接AE,若,则为______度.7、已知点A的坐标是A(﹣2,4),线段轴,且AB=5,则B点的坐标是____.8、若表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为_________.三、解答题(7小题,每小题10分,共计70分)1、如图,四边形ABCD为平行四边形,E,F是直线BD上两点,且BE=DF,连接AF,CE.求证:∠E=∠F.2、已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是;(2)函数y的取值范围是;(3)当x=时,函数有最大值为;(4)当x的取值范围是时,y随x的增大而增大.3、如图,已知平行四边形ABCD.(1)用尺规完成以下基本作图:在CB上截取CE,使CE=CD,连接DE,作∠ABC的平分线BF交AD于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,证明四边形BEDF为平行四边形.4、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.①方法1:如果把图1看成一个大正方形,那么它的面积为;②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式.(2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?①方法1:一路往下数,不回头数.以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;以OAn-1为边的锐角有∠An-1OAn,共有1个;则图中锐角的总个数是;②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是;用两种不同的方法数锐角个数,可以得到等式.(3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.①计算:19782+20222;②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有条对角线,n边形共有条对角线.5、在平面直角坐标系xOy中,点A(a,c)和点B(b,d).给出如下定义:以AB为边,作正方形ABCD,按照逆时针方向排列A、B、C、D四个顶点,该正方形上的点到直线距离的最大值定义为:逆序正方形到直线的最大距离.如图1,直线经过(0,3)且垂直于y轴,点A(﹣2,2),点B(﹣2,﹣1),可求得点C(1,﹣1),D(1,2),且逆序正方形ABCD到直线的最大距离为4.(1)若点A(1,0),点B(3,﹣2),则点C的坐标为,点D的坐标为,逆序正方形ABCD到直线y=﹣x的最大距离为.(2)如图2,若点A(0,4),点B(3,0),求逆序正方形ABCD到直线y=x+2的最大距离.(3)如果点A(a,1),B(a,﹣1),若存在逆序正方形ABCD到直线y=x的最大距离大于2,直接写出a的取值范围.6、为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?7、为丰富学生的课余生活,某学校准备组织学生举行各类球赛活动(每个学生只能参加一种球类活动),将全校学生参加球类活动的调查结果制成如图所示的扇形统计图.其中参加乒乓球的学生有320人.(1)求全校一共有多少名学生?(2)求参加足球的学生的人数比参加篮球的学生的人数多了几分之几?-参考答案-一、单选题1、D【解析】【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∴,故B正确;∴AD=BC,故C正确;故选:D.【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.2、B【解析】【分析】选项A根据多边形的外角和定义判断即可;选项B根据三角形全等的判定方法判断即可;选项C根据轴对称图形的定义判断即可;选项D根据轴对称的性质判断即可.【详解】解:A.所有多边形的外角和为,故本选项不合题意;B.任意两边对应相等的两个直角三角形全等,说法正确,故本项符合题意;C.等腰三角形有1条对称轴,故本选项不合题意;D.如果两个三角形一模一样,那么它们不一定形成轴对称图形,故本选项不合题意;故选:B.【点睛】此题主要考查了多边形的外角和,轴对称的性质,等腰三角形的性质,全等三角形的判定,解题的关键是掌握轴对称图形的概念.3、C【解析】【分析】由求出A,B的坐标,根据点的坐标得到点在直线上,求出直线与y轴交点C的坐标,解方程组求出交点E的坐标,即可得到关于m的不等式组,解之求出答案.【详解】解:当中y=0时,得x=-9;x=0时,得y=12,∴A(-9,0),B(0,12),∵点的坐标为,当m=1时,P(3,0);当m=2时,P(6,-4),设点P所在的直线解析式为y=kx+b,将(3,0),(6,-4)代入,∴,∴点在直线上,当x=0时,y=4,∴C(0,4),,解得,∴E(-3,8),∵点在的内部,∴,∴-1<m<0,故选:C..【点睛】此题考查了一次函数与坐标轴的交点,两个一次函数图象的交点,解一元一次不等式组,确定点在直线上是解题的关键.4、A【解析】【分析】根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择.【详解】解:∵以△ABC的各边的中点为顶点作,∴的周长的周长.∵以各边的中点为顶点作,∴的周长的周长,…,∴的周长故选:A.【点睛】本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键.5、C【解析】【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点B,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点B,作出图形,利用数形结合求解即可.【详解】解:如图,满足条件的点B有8个,故选:C.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定,对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.6、D【解析】【分析】根据点(2,3)到y轴的距离为2,到x轴的距离为3即可判断.【详解】∵圆是以点(2,3)为圆心,2为半径,∴圆心到y轴的距离为2,到x轴的距离为3,则2=2,2<3∴该圆必与y轴相切,与x轴相离.故选D.【点睛】本题是直线和圆的位置关系及坐标与图形的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.7、A【解析】【分析】根据点到轴的距离是横坐标的绝对值,可得答案.【详解】解:∵,∴点到轴的距离是故选:A【点睛】本题考查的是点到坐标轴的距离,掌握点到轴的距离是横坐标的绝对值是解题的关键.二、填空题1、【解析】【分析】根据关于y轴对称的两个点,纵坐标相等,横坐标互为相反数求解即可【详解】解:点关于y轴的对称点的坐标为故答案为:【点睛】本题考查了关于坐标轴对称的点的特征,掌握关于y轴对称的两个点,纵坐标相等,横坐标互为相反数是解题的关键.2、【解析】【分析】由点A(a,-3)与点B(3,b)关于y轴对称,可得从而可得答案.【详解】解:点A(a,-3)与点B(3,b)关于y轴对称,故答案为:【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.3、90【解析】【分析】根据旋转的性质和矩形的性质可得CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,由勾股定理可求AC=AC'的长,延长C'B'交BC于点E,连接CC',由勾股定理求出CC'的长,最后由勾股定理逆定理判断是直角三角形即可.【详解】解:∵将矩形ABCD绕点A按逆时针方向旋转90°,得到矩形AB′C′D′,∴CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,∴延长C'B'交BC于点E,连接CC',如图,则四边形是矩形∴∴∴而∴∴是直角三角形∴故答案为:90【点睛】本题考查勾肥定理、旋转的性质,矩形的性质等知识,解题的关键是掌握旋转变换的性质,4、3【解析】【分析】根据轴对称的性质得到b=-1,a+1=3,求出a的值代入计算即可.【详解】解:∵点,是关于x轴对称的点,∴b=-1,a+1=3,解得a=2,2-(-1)=3,故答案为:3.【点睛】此题考查了关于x轴对称的性质:横坐标相等,纵坐标互为相反数,解题的关键是熟记轴对称的性质.5、【解析】【分析】画出一次函数的图象,再求解一次函数与坐标轴的交点的坐标,再利用三角形的面积公式进行计算即可.【详解】解:如图,令则令则解得故答案为:4【点睛】本题考查的是一次函数与坐标轴的交点坐标,一次函数与坐标轴围成的三角形的面积,利用数形结合的方法解题是解本题的关键.6、22【解析】【分析】先根据平行四边形的性质可得,从而可得,再根据等边三角形的判定证出是等边三角形,根据等边三角形的性质可得,从而可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质即可得.【详解】解:平行四边形中,,,,,平分,,是等边三角形,,,在和中,,,,故答案为:22.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.7、(﹣2,﹣1)或(﹣2,9)##(﹣2,9)或(﹣2,﹣1)【解析】【分析】根据A的坐标和轴确定横坐标,根据AB=5可确定B点的纵坐标.【详解】解:∵线段轴,A的坐标是A(﹣2,4),∴B点的横坐标为﹣2,又∵AB=5,∴B点的纵坐标为﹣1或9,∴B点的坐标为(﹣2,﹣1)或(﹣2,9),故答案为:(﹣2,﹣1)或(﹣2,9).【点睛】本题考查了坐标与图形的性质,熟练掌握与坐标轴平行的点的坐标特点是解题的关键.平行于x轴的直线上的任意两点的纵坐标相同;平行于y轴的直线上任意两点的横坐标相同.8、【解析】【分析】由表示教室里第1列第2排的位置,可得教室里第2列第3排的位置的表示方法,从而可得答案.【详解】解:表示教室里第1列第2排的位置,教室里第2列第3排的位置表示为:故答案为:【点睛】本题考查的是利用有序实数对表示位置,理解题意,理解有序实数对的含义是解本题的关键.三、解答题1、证明见解析【解析】【分析】证明△ADF≌△CBE(SAS),由全等三角形的性质即可解决问题.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠DBC.∵∠ADF+∠ADB=180°,∠CBE+∠DBC=180°∴∠ADF=∠CBE.在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠E=∠F.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.2、(1)-4≤x≤3(2)-2≤y≤4(3)1;4(4)-2≤x≤1【解析】【分析】根据自变量的定义,函数值的定义以及二次函数的最值和增减性,观察函数图象分别写出即可.(1)观察函数图象得:自变量x的取值范围是-4≤x≤3;故答案为:-4≤x≤3;(2)观察函数图象得:函数y的取值范围是-2≤y≤4;故答案为:-2≤y≤4;(3)观察函数图象得:当x=1时,函数有最大值为4;故答案为:1,4;(4)观察函数图象得:当x的取值范围是-2≤x≤1时,y随x的增大而增大.;故答案为:-2≤x≤1【点睛】本题考查了函数图象,熟练掌握函数自变量的定义,函数值的定义以及函数的增减性并准确识图是解题的关键.3、(1)见解析(2)见解析【解析】【分析】(1)延长CB到E使CE=CD,然后作∠ABC的平分线交AD的延长线于F;(2)先根据平行四边形的性质得到AD=BC,AB=CD,ADBC,则CE=AB,再证明∠ABF=∠F得到AB=AF,然后证明BE=DF,从而可判断四边形BEDF为平行四边形.(1)如图,DE、BF为所作;(2)证明:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD,AD∥BC,∵CE=CD,∴CE=AB,∵BF平分∠ABC,∴∠ABF=∠CBF,∵AFBC,∴∠CBF=∠F,∴∠ABF=∠F,∴AB=AF,∴CE=AF,即CB+BE=AD+DF,∴BE=DF,∵BEDF,∴四边形BEDF为平行四边形.【点睛】本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.4、(1)①a+b2;②a2+b2+2ab;a+b2=a2+b2+2ab;(2)①(n-1)+(n-2)+(n-3)+……+1;②12n【解析】【分析】(1)①根据边长为(a+b)的正方形面积公式求解即可;②利用矩形和正方形的面积公式求解即可;(2)①根据题中的数据求和即可;②根据题意求解即可;(3)①利用(1)的规律求解即可;②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为12n(n-3)(n≥3,且n【详解】解:(1)①大正方形的面积为a+b2②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为a2可以得到等式:a+b2=a故答案为:①a+b2;②a2+b2(2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;②锐角的总个数是12n(n可以得到等式为(n-1)+(n-2)+(n-3)+……+1=12n(n故答案为:①(n-1)+(n-2)+(n-3)+……+1;②12n(n-1);(n-1)+(n-2)+(n-3)+……+1=12n((3)①19782+20222=[2000+(-22)]2+(2000+22)2=20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22=2×(20002+222)=2×[4000000+(20+2)2]=2×[4000000+(202+22+2×20×2)]=8000968;②一个四边形共有2条对角线,即12一个五边形共有5条对角线,即12一个六边形共有9条对角线,即12……,一个十七边形共有12一个n边形共有12n(n-3)(n≥3,且n故答案为:119,12n(n【点睛】本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.5、(1)(5,0);(3,2);(2)(3)a>1或a<-3【解析】【分析】(1)由正方形边长相等可得C的坐标,由正方形对角线互相垂直可得D的坐标,两点确定一条直线可得直线AB解析式y=-x+1,直线AB与直线y=-x平行,且与x轴夹角为45°,延长DA到点E交直线y=-x于E点,由勾股定理得AE=,由两点间距离公式DA=2,即DE=;(2)过C点作CM⊥x,垂足为M,过D作DN⊥y轴,垂足为N,证△AOB≌△BMC,可得C的坐标,同理,△DNA≌△AOB可得D为(4,7),过C作CE垂直y=x,垂足为E,直线CE的解析式为y=-x+10,直线CE:y=-x+10与y=x+2相交点为E(4,6),由两点距离公式可得CE=3;(3)由题意易得AB=2,分情况讨论,当a>-1时,C(a+2,-1),D(a+2,1),同(2)的思路方法可得a>1,当a<-1时,C(a-2,-1),D(a-2,1),同(2)的思路方法可得a<-3.(1)如图:∵A(1,0),B(3,-2),由图可知:正方形的边长相等可得点C坐标为(5,0),由正方形的对角线互相垂直得点D坐标为(3,2);由A(1,0),B(3,-2)可得直线AB:y=-x+1,直线AB与直线y=-x平行且与x轴的夹角为45°,故C、D点到直线y=-x的距离即逆序正方形ABCD到直线y=-x的距离,延长DA交点E交直线y=-x于E∴∴AE=OE∴∴∴AE=,由两点间距离公式得:,∴;故答案为:(5,0);(3,2);(2)过C点作CM⊥x,垂足为M,过D作DN⊥y轴,垂足为N,∵∠ABO+∠CBM=90°,∠BAO+∠ABO=90°,∴∠BAO=∠CBM,∵AB=BC,∠O=∠M=90°,∴△AOB≌△BMC(ASA),∴CM=3,BM=4,∴C的坐标为(7,3),同理,△DNA≌△AOB(ASA),∴DN=AO=4,AN=OB=3,∴D的坐标为(4,7),由图象知,C到y=x+2的距离最近,过C作CE垂直y=x,垂足为E,设直线CE的解析式为y=-x+b,把C代入上式得b=10,∴直线CE:y=-x+10,,解得,,∴E的坐标为(4,6),∴;(3)∵A(a,1),B(a,-1),∴AB=2,若a>-1,则C(a+2,-1),D(a+2,1),点C到直线y=x的距离最大,过C作y=x的垂线,垂足为E,设直线CE的解析式为y=-x+b,把C(a+2,-1)代入上式得b=a+1,,解得,∴E的坐标,当C到直线y=x的距离为时,,解得a=1或a=-7(舍),即a>1;当a<-1时,由题意得C(a-2,-1),D(a-2,1),D到y=x的距离最大,当D到y=x的距离为时,同理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论