解析卷-冀教版8年级下册期末试卷带答案详解(夺分金卷)_第1页
解析卷-冀教版8年级下册期末试卷带答案详解(夺分金卷)_第2页
解析卷-冀教版8年级下册期末试卷带答案详解(夺分金卷)_第3页
解析卷-冀教版8年级下册期末试卷带答案详解(夺分金卷)_第4页
解析卷-冀教版8年级下册期末试卷带答案详解(夺分金卷)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版8年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、已知点P(2﹣m,m﹣5)在第三象限,则整数m的值是()A.4 B.3,4 C.4,5 D.2,3,42、如图,在中,DE平分,,则()A.30° B.45° C.60° D.80°3、在平面直角坐标系中,点(-2,a2+3)关于x轴对称的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4、已知一次函数y=k1x+b1和一次函数y1=k2x+b2的自变量x与因变量y1,y2的部分对应数值如表所示,则关于x、y的二元一次方程组的解为()x…﹣2﹣1012…y1…﹣10123…y2…﹣5﹣3﹣113…A. B. C. D.5、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是()A.相 B.马 C.炮 D.兵6、如图所示,直线分别与轴、轴交于点、,以线段为边,在第二象限内作等腰直角,,则过、两点直线的解析式为()A. B. C. D.7、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、已知菱形ABCD两条对角线的长分别为6和8,若另一个菱形EFGH的周长和面积分别是菱形ABCD周长和面积的2倍,则菱形EFGH两条对角线的长分别是

_____.2、在平面直角坐标系中,点A(-2,4),点B(4,2),点P为x轴上一动点,当PA+PB的值最小时,此时点P的坐标为____________.3、已知点,是关于x轴对称的点,______.4、已知某函数图像过点(-1,1),写出一个符合条件的函数表达式:______.5、已知,,在x轴找一点P,使的值最小,则点P的坐标为_______.6、一次函数y=﹣2x+7的图象不经过第_____象限.7、如图,已知长方形ABCD中,AD=3cm,AB=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ADE的面积为_______cm2.8、如图,∠EAD和∠DCF是四边形ABCD的外角,∠EAD的平分线AG和∠DCF的平分线CG相交于点G.若∠B=m°,∠D=n°,则∠G=______°.(用含m、n的代数式表示)三、解答题(7小题,每小题10分,共计70分)1、在平面直角坐标系xOy中,点A(a,c)和点B(b,d).给出如下定义:以AB为边,作正方形ABCD,按照逆时针方向排列A、B、C、D四个顶点,该正方形上的点到直线距离的最大值定义为:逆序正方形到直线的最大距离.如图1,直线经过(0,3)且垂直于y轴,点A(﹣2,2),点B(﹣2,﹣1),可求得点C(1,﹣1),D(1,2),且逆序正方形ABCD到直线的最大距离为4.(1)若点A(1,0),点B(3,﹣2),则点C的坐标为,点D的坐标为,逆序正方形ABCD到直线y=﹣x的最大距离为.(2)如图2,若点A(0,4),点B(3,0),求逆序正方形ABCD到直线y=x+2的最大距离.(3)如果点A(a,1),B(a,﹣1),若存在逆序正方形ABCD到直线y=x的最大距离大于2,直接写出a的取值范围.2、已知一次函数,完成下列问题:(1)在所给直角坐标系中画出此函数的图像;(2)根据图像回答:当__________时,;当__________时,;当__________时,.3、平面直角坐标系中有点、,连接AB,以AB为直角边在第一象限内作等腰直角三角形,则点C的坐标是_________.4、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数的性质及其应用的部分过程,请按要求完成下列各小题.x…﹣4﹣3﹣2﹣1012345…y…6a0﹣1.5﹣2﹣1.5020b…(1)表中a=;b=;(2)根据表中的数据画出该函数的大致图象,并根据函数图象写出该函数的一条性质.(3)已知直线的图象如图所示,结合你所画的函数图象,当y1>y2时直接写出x的取值范围.(保留1位小数,误差不超过0.2)5、在平面直角坐标系xOy中,A(﹣1,1)B(3,2),连接线段AB.(1)一次函数y=﹣x+b与线段AB有交点,求b的取值范围;(2)一次函数y=kx+3与线段AB有交点,求k的取值范围.6、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.7、已知:线段m.求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.-参考答案-一、单选题1、B【解析】【分析】根据第三象限点的坐标特点列不等式组求出解集,再结合整数的定义解答即可.【详解】解:∵P(2﹣m,m﹣5)在第三象限∴2−m<0m−5∵m是整数∴m的值为3,4.故选B.【点睛】本题主要考查了平面直角坐标系内点的坐标特点、解不等式组等知识点,掌握第三象限内的点横、纵坐标均小于零成为解答本题的关键.2、C【解析】【分析】根据平行四边形的性质得,故,由DE平分得,即可计算.【详解】∵四边形ABCD是平行四边形,∴,∴,∵DE平分,∴,∴.故选:C.【点睛】本题考查平行四边形的性质,平行线的性质以及角平分线的定义,掌握平行四边形的性质是解题的关键.3、C【解析】【分析】根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数求解即可.【详解】解:∵点关于轴对称的点是,∵,∴点关于轴对称的点在第三象限.故选:C.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数.4、C【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),∴一次函数y1=k1x与y=k2x+b的图象的交点坐标为(2,3),∴关于x,y的二元一次方程组的解为.故选:C.【点睛】本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y1=k1x+b1,y2=k2x+b2,其图象的交点坐标(x,y)中x,y的值是方程组的解.5、C【解析】【分析】根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.【详解】解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;故选C.【点睛】本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.6、B【解析】【分析】过作轴,可证得,从而得到,,可得到再由,,即可求解.【详解】解:过作轴,则,对于直线,令,得到,即,,令,得到,即,,,为等腰直角三角形,即,,,,在和中,,,,,即,,设直线的解析式为,,b=2−5k+b=3,解得.过、两点的直线对应的函数表达式是.故选:B【点睛】本题主要考查了求一次函数解析式,一次函数的图象和性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.7、D【解析】【分析】由x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.【详解】解:∵点P(2a﹣4,a+3)在x轴上,∴a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴点(﹣a+2,3a﹣1)所在的象限为第三象限,故选:D.【点睛】此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.二、填空题1、,【解析】【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积,然后根据勾股定理即可得到结论.【详解】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴菱形ABCD的周长是:5×4=20,面积是:×6×8=24.∵另一个菱形EFGH的周长和面积分别是菱形ABCD周长和面积的2倍,∴菱形EFGH的周长和面积分别是40,48,∴菱形EFGH的边长是10,设菱形EFGH的对角线为2a,2b,∴a2+b2=100,×2a×2b=48,∴a=,b=,∴菱形EFGH两条对角线的长分别是,,故答案为:2,.【点睛】本题考查了菱形的性质以及勾股定理.关键是熟练掌握菱形的面积等于对角线积的一半的知识点.2、(2,0)【解析】【分析】作点B关于x轴的对称点B',连接AB′交x轴于点P,则点P即为所求.此时,PA+PB的值最小,可得出B′(4,-2),利用待定系数法求出AB′的解析式,即可得点P的坐标.【详解】作点B关于x轴的对称点B',连接AB′交x轴于点P,则点P即为所求.此时,PA+PB的值最小,∵点B(4,2).∴B′(4,-2),设直线AB′的解析式为y=kx+b,∵点A(-2,4),点B′(4,-2).∴,解得:,∴直线AB′的解析式为y=-x+2,当y=0时,-x+2=0,解得:x=2,∴点P的坐标(2,0);【点睛】本题主要考查最短路线问题;若两点在直线的同一旁,则需作其中一点关于这条直线的对称点.3、3【解析】【分析】根据轴对称的性质得到b=-1,a+1=3,求出a的值代入计算即可.【详解】解:∵点,是关于x轴对称的点,∴b=-1,a+1=3,解得a=2,2-(-1)=3,故答案为:3.【点睛】此题考查了关于x轴对称的性质:横坐标相等,纵坐标互为相反数,解题的关键是熟记轴对称的性质.4、y=-x(答案不唯一)【解析】【分析】设符合条件的函数表达式为,把点(-1,1)代入,即可求解.【详解】解:设符合条件的函数表达式为,∵函数图像过点(-1,1),∴,解得:,∴符合条件的函数表达式为y=-x.故答案为:y=-x(答案不唯一)【点睛】本题主要考查了求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式是解题的关键.5、【解析】【分析】根据题意求出A点关于y轴的对称点,连接,交x轴于点P,则P即为所求点,用待定系数法求出过两点的直线解析式,求出此解析式与x轴的交点坐标即可.【详解】解:作点A关于y轴的对称点,连接,设过的直线解析式为,把,,则解得:,,故此直线的解析式为:,当时,,即点P的坐标为.故答案为:.【点睛】本题考查的是最短线路问题及用待定系数法求一次函数的解析式,熟知轴对称的性质及一次函数的相关知识是解答此题的关键.6、三【解析】【分析】先根据一次函数y=﹣2x+7判断出k、b的符号,再根据一次函数的性质进行解答即可.【详解】解:∵一次函数y=﹣2x+7中,k=﹣2<0,b=7>0,∴此函数的图象经过第一、二、四象限,∴此函数的图象不经过第三象限.故答案为:三.【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.7、6【解析】【分析】根据折叠的条件可得:,在直角中,利用勾股定理就可以求解.【详解】解:将此长方形折叠,使点与点重合,..,根据勾股定理可知:..解得:.的面积为:.故答案为:.【点睛】本题考查了折叠的性质,三角形的面积,矩形的性质,勾股定理,解题的关键是注意掌握方程思想的应用.8、【解析】【分析】根据四边形的内角和定理可得,从而得到∠DAE+∠DCF=m°+n°,再由∠EAD的平分线AG和∠DCF的平分线CG相交于点G.可得,进而得到∠BAG+∠BCG=360°−12m°−12【详解】解:∵∠B=m°,∠D=n°,∴,∵∠EAD和∠DCF是四边形ABCD的外角,∴,∵∠EAD的平分线AG和∠DCF的平分线CG相交于点G.∴,∴,∵∠G+∠BAG+∠B+∠BCG=360°,∴∠G=360°−∠B+∠BAG+BCG故答案为:【点睛】本题主要考查了多边形的内角和定理,角平分线的应用,补角的应用,熟练掌握多边形的内角和定理是解题的关键.三、解答题1、(1)(5,0);(3,2);(2)(3)a>1或a<-3【解析】【分析】(1)由正方形边长相等可得C的坐标,由正方形对角线互相垂直可得D的坐标,两点确定一条直线可得直线AB解析式y=-x+1,直线AB与直线y=-x平行,且与x轴夹角为45°,延长DA到点E交直线y=-x于E点,由勾股定理得AE=,由两点间距离公式DA=2,即DE=;(2)过C点作CM⊥x,垂足为M,过D作DN⊥y轴,垂足为N,证△AOB≌△BMC,可得C的坐标,同理,△DNA≌△AOB可得D为(4,7),过C作CE垂直y=x,垂足为E,直线CE的解析式为y=-x+10,直线CE:y=-x+10与y=x+2相交点为E(4,6),由两点距离公式可得CE=3;(3)由题意易得AB=2,分情况讨论,当a>-1时,C(a+2,-1),D(a+2,1),同(2)的思路方法可得a>1,当a<-1时,C(a-2,-1),D(a-2,1),同(2)的思路方法可得a<-3.(1)如图:∵A(1,0),B(3,-2),由图可知:正方形的边长相等可得点C坐标为(5,0),由正方形的对角线互相垂直得点D坐标为(3,2);由A(1,0),B(3,-2)可得直线AB:y=-x+1,直线AB与直线y=-x平行且与x轴的夹角为45°,故C、D点到直线y=-x的距离即逆序正方形ABCD到直线y=-x的距离,延长DA交点E交直线y=-x于E∴∴AE=OE∴∴∴AE=,由两点间距离公式得:,∴;故答案为:(5,0);(3,2);(2)过C点作CM⊥x,垂足为M,过D作DN⊥y轴,垂足为N,∵∠ABO+∠CBM=90°,∠BAO+∠ABO=90°,∴∠BAO=∠CBM,∵AB=BC,∠O=∠M=90°,∴△AOB≌△BMC(ASA),∴CM=3,BM=4,∴C的坐标为(7,3),同理,△DNA≌△AOB(ASA),∴DN=AO=4,AN=OB=3,∴D的坐标为(4,7),由图象知,C到y=x+2的距离最近,过C作CE垂直y=x,垂足为E,设直线CE的解析式为y=-x+b,把C代入上式得b=10,∴直线CE:y=-x+10,,解得,,∴E的坐标为(4,6),∴;(3)∵A(a,1),B(a,-1),∴AB=2,若a>-1,则C(a+2,-1),D(a+2,1),点C到直线y=x的距离最大,过C作y=x的垂线,垂足为E,设直线CE的解析式为y=-x+b,把C(a+2,-1)代入上式得b=a+1,,解得,∴E的坐标,当C到直线y=x的距离为时,,解得a=1或a=-7(舍),即a>1;当a<-1时,由题意得C(a-2,-1),D(a-2,1),D到y=x的距离最大,当D到y=x的距离为时,同理得a=-3,即a<-3,综上所述,a>1或a<-3.【点睛】本题考查一次函数的应用,解本题的关键要熟练掌握三角形全等的判断,解二元一次方程组,代入法求直线解析式,两点间距离公式等.2、(1)画图见解析(2)【解析】【分析】(1)先列表,再描点,再连线即可得到函数的图象;(2)结合函数的图象,可得答案.(1)解:列表:描点并连线(2)解:当则函数图象在轴的上方,当时,则函数图象在点的下方,当时,结合图象可得:故答案为:【点睛】本题考查的是画一次函数的图象,一次函数的性质,掌握“利用描点法画一次函数的图象,结合函数的图象与性质求解不等式的解集与方程的解”是解本题的关键.3、3,7或7,4##7,4或3,7【解析】【分析】根据题意作出图形,①当∠BAC=90°时,过点C1作C1D⊥y轴于点,证明△AC1D△BAO;②当∠ABC=90°时,过点C2作C1E⊥x【详解】解:如图,、,∴AB=以AB为直角边在第一象限内作等腰直角三角形,则AC=AB=5,①当∠BAC=90°时,过点C1作C1D⊥y∵∠AOB=90°∴∠OAB+∠OBA=∠OAB+∠DA∴∠DA在△AC1D∠AOB=∠△AC1D∴AD=OB=4,D∴OD=OA+AD=3+4=7∴②当∠ABC=90°时,过点C2作C1E⊥x同理可得△AOB≌△BEOE=OB+BE=4+3=7,C2∴综上,点C的坐标是3,7或7,4故答案为:3,7或7,4【点睛】本题考查了坐标与图形,等腰直角三角形的性质,三角形全等的性质与判定,分类讨论是解题的关键.4、(1)2.5;﹣2(2)见解析(3)x<﹣2或1.5<x<5【解析】【分析】(1)根据解析式计算即可;(2)利用描点法画出函数图象,观察图象可得函数的一条性质;(3)根据图象即可求解.(1)解:当x=﹣3时,y1=×(﹣3)2﹣2=2.5,∴a=2.5,当x=5时,y1=2﹣2×|5﹣3|=﹣2,∴b=﹣2,故答案为:2.5,﹣2;(2)解:画出函数图象如图所示:由图象得:x<0时,y随x的增大而减小;(3)画出直线的图象如图所示,由图象可知,当y1>y2时,x的取值范围为:x<﹣2或1.5<x<5.【点睛】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.5、(1)0≤b≤5(2)k≥2或k≤【解析】【分析】(1)把A、B分别代入y=-x+b,分别求得b的值,即可求得b的取值范围;(2)把A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论