




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华东师大版7年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、若不等式(m-2)x>n的解集为x>1,则m,n满足的条件是().A.m=n-2且m>2 B.m=n-2且m<2C.n=m-2且m>2 D.n=m-2且m<22、若,则不等式组的解集是()A. B. C. D.无解3、关于x的不等式的解集如图所示,则a的值是()A.-1 B.1C.2 D.34、下列各方程中,属于一元一次方程的是()A. B. C. D.5、下列各式中,一元一次方程是()A.2x=4 B.2﹣=5 C.2x﹣y=6 D.2x﹣y=76、下列说法中,一定正确的是()A.若,则 B.若,则C.若,则 D.若,则7、如果a<b,那么下列不等式中不成立的是()A.3a<3b B.-3a<-3b C.-a>-b D.3+a<3+b8、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于()A.19° B.20° C.24° D.25°第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、已知,则的值是__.2、如图,在面积为48的等腰中,,,P是BC边上的动点,点P关于直线AB、AC的对称点外别为M、N,则线段MN的最大值为______.3、据统计资料,甲、乙两种作物的单位面积产量的比是1∶2.现要把一块长200m、宽100m的长方形土地,分为两块小长方形土地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作物的总产量的比是3∶4?解:甲、乙两种作物的种植区域分别为长方形AEFD和BCFE.设AE=xm,BE=ym,根据问题中涉及长度、产量的数量关系,列方程组:解得:___________4、幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为________.5、通过“___________”或“___________”进行消元,把“三元”转化为“___________”,使解三元一次方程组转化为解___________,进而再转化为解___________.6、若关于的不等式的解集为,则的取值范围为__.7、若过某多边形一个顶点的所有对角线将这个多边形分成3个三角形,则这个多边形是________边形.三、解答题(7小题,每小题10分,共计70分)1、解关于x的方程=0,我们也可以这样来解:()x=0,因为≠0.所以方程的解:x=0.请按这种方法解下列方程:(1)=0;(2)=10.2、解方程组:(1)(2)3、渔场计划购买甲、乙两种鱼苗共4000尾,甲种鱼苗每尾0.6元,乙种鱼苗每尾0.8元.(1)若购买这批鱼苗共用了2900元,甲乙两种鱼苗分别购买了多少尾?(2)若要使这批鱼苗的费用不超过3000元,那么应至少购买多少尾甲种鱼苗?4、解方程:=﹣6.5、【数学概念】如图1,A、B为数轴上不重合的两个点,P为数轴上任意一点,我们比较线段PA和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段PA和PB的长度相等,则将线段PA或PB的长度定义为点P到线段AB的“靠近距离”.如图①,点A表示的数是-4,点B表示的数是2.(1)【概念理解】若点P表示的数是-2,则点P到线段AB的“靠近距离”为______;(2)【概念理解】若点P表示的数是m,点P到线段AB的“靠近距离”为3,则m的值为______(写出所有结果);(3)【概念应用】如图②,在数轴上,点P表示的数是-6,点A表示的数是-3,点B表示的数是2.点P以每秒2个单位长度的速度沿数轴向右运动,同时点B以每秒1个单位长度的速度沿数轴向右运动.设运动的时间为t秒,当点P到线段AB的“靠近距离”为2时,求t的值.6、已知:∠AOB是直角,过点O作射线OC,设∠AOC=α(0°<α<180°,且α≠90°),将射线OC逆时针旋转45°得到射线OD.(1)如图1,若0°<α<45°,则∠AOC+∠BOD=°;(2)如图2,若45°<α<90°.①请你直接写出∠AOC与∠BOD之间的数量关系;②作∠AOD的角平分线OE,试判断∠COE与∠BOD之间的数量关系,并证明;(3)若OF平分∠BOC,请你直接写出∠DOF的度数(用含有α的代数式表示).7、【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴发现:如图所示的数轴上,点O为原点,点A、B表示的数分别是a和b,点B在点A的右边(即),则A、B两点之间的距离(即线段的长).【问题情境】如图所示,数轴上点A表示的数,点B表示的数为,线段的中点C表示的数为x.点M从点A出发,以每秒2个单位长度的速度沿数轴向右运动;同时点N从点B出发,以每秒3个单位的速度沿数轴向左运动.设运动时间为t秒.【综合运用】根据“背景知识”和“问题情境”解答下列问题:(1)填空:①A、B两点之间的距离_______,线段的中点C表示的数_______.②用含t的代数式表示:t秒后,点M表示的数为________;点N表示的数为______.(2)求当t为何值时,点M运动到线段的中点C,并求出此时点N所表示的数.(3)求当t为何值时,.-参考答案-一、单选题1、C【解析】略2、D【解析】【分析】根据求不等式组的解集方法:“大大小小找不到”判断即可”【详解】若,则不等式组的解集是无解.故选:D.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、D【解析】【分析】根据数轴可确定不等式的解集,根据解集相同列出方程求解即可.【详解】解:根据数轴可知,不等式的解集为,解不等式得,,故,解得,,故选:D.【点睛】本题考查了一元一次方程的解法和一元一次不等式的解集,解题关键是根据不等式的解集相同列出方程.4、C【解析】【分析】利用一元一次方程的定义进行解答即可.【详解】解:A、含有分式,不是一元一次方程,故此选项不合题意;B、含有两个未知数,不是一元一次方程,故此选项不合题意;C、是一元一次方程,故此选项符合题意;D、没有未知数,不是一元一次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元一次方程定义,关键是掌握一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.5、A【解析】【分析】利用一元一次方程的定义进行解答即可.【详解】解:A、是一元一次方程,故此选项符合题意;B、含有分式,不是一元一次方程,故此选项不合题意;C、含有两个未知数,不是一元一次方程,故此选项不合题意;D、含有两个未知数,不是一元一次方程,故此选项不合题意;故选:A.【点睛】本题主要考查了一元一次方程定义,关键是掌握一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.6、A【解析】【分析】根据等式两边同时乘以可对进行判断;利用等式两边同时除以c可对进行判断;利用平方根的定义对进行判断;根据等式的性质对进行判断.【详解】解:.若,则,所以选项符合题意;.若,当时,,所以选项不符合题意;.若,则或,所以选项不符合题意;.若,则,所以选项不符合题意.故选:.【点睛】本题考查了等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.7、B【解析】【分析】根据不等式的性质,加减运算不等号不变,乘除运算,正数不等号不变,负号,不等号一定改变,判断B不成立.【详解】∵a<b,3是正数,∴3a<3b,故A不符合题意;∵a<b,-3是负数,∴-3a>-3b,故B不成立,符合题意;∵a<b,-1是负数,∴-a>-b,故C成立,不符合题意;∵a<b,3是正数,∴3+a<3+b,故D成立,不符合题意;故选B.【点睛】本题考查了不等式的基本性质,熟练掌握性质,特别是负数参与计算的不等式问题,注意改变不等号的方向是解题的关键.8、B【解析】【分析】根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.【详解】∵BD的垂直平分线交AB于点E,∴∴∴∵将沿AD折叠,点C恰好与点E重合,∴,,∵∴∵∴∴故选:B.【点睛】本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.二、填空题1、2【解析】【分析】由题意根据绝对值和偶次方的非负性得出方程组,求出方程组的解即可.【详解】解:,,,即,①②,得,解得,把代入①,得,解得,,.故答案为:2.【点睛】本题考查绝对值,偶次方,二次一元方程组的应用,解题的关键是能求出方程组的解.2、19.2【解析】【分析】点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得,当点P与点B或点C重合时,P、M、N三点共线,MN最长,由轴对称可得,,再由三角形等面积法即可确定MN长度.【详解】解:如图所示:点P关于直线AB、AC的对称点分别为M、N,由图可得:,当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线,MN最长,∴,,∵等腰面积为48,,∴,,∴,故答案为:.【点睛】题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.3、【解析】略4、6【解析】【分析】根据每行,每列,对角线上的三个数之和相等,先确定9右边的数,再确定最中间的数,从而可得答案.【详解】解:∵每一横行数字之和是15,∴最下面一行9右边的数字为15-4-9=2,∵两条对角线上的数字之和是15,∴中间的数字为15-8-2=5,∴4+5+a=15,解得a=6,故答案为:6.【点睛】本题主要考查一元一次方程的应用,根据每一横行,每一竖行以及两条对角线上的数字之和都是15得出中间的数是解题的关键.5、代入加减二元二元一次方程组一元一次方程【解析】略6、【解析】【分析】根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.【详解】解:不等式的解集为,,.故答案为:.【点睛】本题考查了一元一次不等式的性质,解一元一次不等式,掌握不等式性质,不等式的两边同时乘以或除以一个负数,不等号的方向发生改变是解题关键.7、五【解析】【分析】根据过多边形的一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,计算可求解.【详解】解:设这是个n边形,由题意得n-2=3,∴n=5,故答案为:五.【点睛】本题主要考查多边形的对角线,掌握多边形对角线的性质是解题的关键.三、解答题1、(1)x=1(2)x=27【解析】【分析】(1)利用乘法的分配律得到(x﹣1)=0,然后根据等式的性质解方程;(2)先变形为=0,然后与(1)一样解方程.(1)解:∵(x﹣1)=0,∴x﹣1=0,∴x=1;(2)解:∵=10,∴-10=0,∴=0,即=0,∴(x﹣27)=0,∴x﹣27=0,∴x=27.【点睛】此题考查了一元一次方程的特殊解法,解题的关键是正确理解例题中所给的形式,仿照例题解答问题.2、(1)(2)【解析】【分析】根据加减消元的方法求解即可.(1)解:,由①-②得:,∴,把代入②,解得:,∴方程组的解为;(2)解:方程组整理得:,由①+②,得:,∴,把代入①,得:,∴方程组的解为.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3、(1)甲种鱼苗购买了1500尾,乙种鱼苗购买了2500尾(2)应至少购买1000尾甲种鱼苗【解析】【分析】(1)设甲种鱼苗购买了尾,乙种鱼苗购买了尾,根据购买甲、乙两种鱼苗4000尾共用了2900元,即可得出关于,的二元一次方程组,解之即可得出结论;(2)设购买尾甲种鱼苗,则购买尾乙种鱼苗,根据总价单价数量,结合购买这批鱼苗的费用不超过3000元,即可得出关于的一元一次不等式,解之取其中的最小值即可得出结论.(1)设甲种鱼苗购买了尾,乙种鱼苗购买了尾,依题意得:,解得:.答:甲种鱼苗购买了1500尾,乙种鱼苗购买了2500尾.(2)设购买尾甲种鱼苗,则购买尾乙种鱼苗,依题意得:,解得:.答:应至少购买1000尾甲种鱼苗.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.4、x=﹣3【解析】【分析】方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】解:方程整理得:=﹣6,去分母得:3(3x﹣1)﹣2(2x+9)=﹣36,去括号得:9x﹣3﹣4x﹣18=﹣36,移项合并得:5x=﹣15,解得:x=﹣3.【点睛】本题考查一元一次方程的解法,掌握解一元一次方程的方法与步骤是解题关键.5、(1)2;(2)-7或-1或5;(3)t的值为或或6或10.【解析】【分析】(1)由“靠近距离”的定义,可得答案;(2)点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时;②当点P在点A和点B之间时;③当点P在点B右侧时;(3)分四种情况进行讨论:①当点P在点A左侧,PA<PB;②当点P在点A右侧,PA<PB;③当点P在点B左侧,PB<PA;④当点P在点B右侧,PB<PA,根据点P到线段AB的“靠近距离”为2列出方程,解方程即可.(1)解:∵PA=-2-(-4)=2,PB=2-(-2)=4,PA<PB∴点P到线段AB的“靠近距离”为:2故答案为:2;(2)∵点A表示的数为-4,点B表示的数为2,∴点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时,PA<PB,∵点A到线段AB的“靠近距离”为3,∴-4-m=3∴m=-7;②当点P在点A和点B之间时,∵PA=m+4,PB=2-m,如果m+4=3,那么m=-1,此时2-m=3,符合题意;∴m=-1;③当点P在点B右侧时,PB<PA,∵点P到线段AB的“靠近距离”为3,∴m-2=3,∴m=5,符合题意;综上,所求m的值为-7或-1或5.故答案为-7或-1或5;(3)分四种情况进行讨论:①当点P在点A左侧,PA<PB,∴-3-(-6+2t)=2,∴t=;②当点P在点A右侧,PA<PB,∴(-6+2t)-(-3)=2,∴t=;③当点P在点B左侧,PB<PA,10∴2+t-(-6+2t)=2,∴t=6;④当点P在点B右侧,PB<PA,∴(-6+2t)-(2+t)=2,∴t=10;综上,所求t的值为或或6或10.【点睛】本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键.6、(1)45(2)①;②图见解析,,证明见解析(3)当时,;当时,或【解析】【分析】(1)先根据直角的定义可得,再根据旋转的定义可得,然后根据角的和差即可得;(2)①先根据旋转的定义可得,再根据角的和差可得,由此即可得;②先利用量角器作的角平分线,再根据角平分线的定义可得,然后根据角的和差可得,由此即可得出结论;(3)分①射线在直线的上方,②射线在直线的下方两种情况,再分别在和范围内,根据角平分线的定义、角的和差进行运算即可得.(1)解:是直角,,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幕墙工程安装精度控制方案
- 第二单元 地名中的秘密说课稿-2025-2026学年小学地方、校本课程黑教版人文与社会
- 2025年安全生产工作会总结范文(二篇)
- 毕业设计致谢范文8篇
- 2025商铺拆迁补偿合同
- 毕业论文(设计)致谢合集8篇
- 餐厨垃圾协同厌氧消化工艺方案
- 2025标准版用户服务合同协议
- 2025年麻醉科常见并发症处理与护理模拟考试答案及解析
- 《2025企业短期借款合同书》
- 培训学校上墙管理制度
- 出血性疾病诊疗规范
- 口腔科消毒管理制度
- 供养中心考试题及答案
- 医学影像技术发展介绍
- 货币互换协议书
- DB65╱T 3953-2016 反恐怖防范设置规范 商业场所
- 航运企业船员安全培训及宣传制度
- 《医学文献检索技巧》课件
- 2024年贵州省瓮安县事业单位公开招聘教师岗笔试题带答案
- 高校教师命题能力培养机制研究
评论
0/150
提交评论