




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版9年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列图形中,既是中心对称图形又是抽对称图形的是()A. B. C. D.2、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()A.1cm B.2cm C.2cm D.4cm3、下列判断正确的个数有()①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个 B.2个 C.3个 D.4个4、下列事件是必然发生的事件是()A.在地球上,上抛的篮球一定会下落B.明天的气温一定比今天高C.中秋节晚上一定能看到月亮D.某彩票中奖率是1%,买100张彩票一定中奖一张5、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是()A. B. C. D.6、如图,A,B,C是正方形网格中的三个格点,则是()A.优弧 B.劣弧 C.半圆 D.无法判断7、下列图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.8、如图,AB是的直径,CD是的弦,且,,,则图中阴影部分的面积为()A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字1,2,3;B袋中的三个小球上分别标记数字2,3,4.这六个小球除标记的数字外,其余完全相同.将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,则摸出的这两个小球标记的数字之和为5的概率为______.2、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC,若弦BC的长度为,则∠BAC=________度.3、边长为2的正三角形的外接圆的半径等于___.4、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有_____(填写所有正确结论的序号).5、图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为6m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为_____m2.6、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.7、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).三、解答题(7小题,每小题0分,共计0分)1、对于平面直角坐标系xOy中的图形M,N,给出如下定义:若图形M和图形N有且只有一个公共点P,则称点P是图形M和图形N的“关联点”.已知点,,,.(1)直线l经过点A,的半径为2,在点A,C,D中,直线l和的“关联点”是______;(2)G为线段OA中点,Q为线段DG上一点(不与点D,G重合),若和有“关联点”,求半径r的取值范围;(3)的圆心为点,半径为t,直线m过点A且不与x轴重合.若和直线m的“关联点”在直线上,请直接写出b的取值范围.2、如图,是由若干个完全相同的小正方体组成的一个几何体.从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.3、随着科技的发展,沟通方式越来越丰富.一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学联系.(1)用恰当的方法列举出甲、乙两位同学选择沟通方式的所有可能;(2)求甲、乙两位同学恰好选择同一种沟通方式的概率.4、在中,,,点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.(1)如图1,点E在点B的左侧运动.①当,时,则___________°;②猜想线段CA,CF与CE之间的数量关系为____________.(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.5、为坚持“五育并举”,落实立德树人根本任务,教育部出台了“五项管理”举措.我校对九年级部分家长就“五项管理”知晓情况作调查,A:完全知晓,B:知晓,C:基本知晓,D:不知晓.九年级组长将调查情况制成了如下的条形统计图和扇形统计图.请根据图中信息,回答下列问题:(1)共调查了多少名家长?写出图2中选项所对应的圆心角,并补齐条形统计图;(2)我校九年级共有450名家长,估计九年级“不知晓五项管理”举措的家长有多少人;(3)已知选项中男女家长数相同,若从选项家长中随机抽取2名家长参加“家校共育”座谈会,请用列表或画树状图的方法,求抽取家长都是男家长的概率.6、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).7、一个几何体的三个视图如图所示(单位:cm).(1)写出这个几何体的名称:;(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.-参考答案-一、单选题1、B【详解】解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;.既是轴对称图形,也是中心对称图形,故此选项符合题意;.是轴对称图形,不是中心对称图形,故此选项不符合题意;.不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于设半径为r,即OA=OB=AB=r,OM=OA•sin∠OAB=,∵圆O的内接正六边形的面积为(cm2),∴△AOB的面积为(cm2),即,,解得r=4,故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.3、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.4、A【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【详解】解:A、在地球上,上抛的篮球一定会下落是必然事件,符合题意;B、明天的气温一定比今天的高,是随机事件,不符合题意;C、中秋节晚上一定能看到月亮,是随机事件,不符合题意;D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意.故选:A.【点睛】本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.关键是理解必然事件指在一定条件下一定发生的事件.5、D【分析】根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),进行计算即可.【详解】解:∵一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,∴抽到每个球的可能性相同,∴布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是,∴P(白球).故选:D.【点睛】本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键.6、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.7、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.8、C【分析】如图,连接OC,OD,可知是等边三角形,,,,计算求解即可.【详解】解:如图连接OC,OD∵∴是等边三角形∴由题意知,故选C.【点睛】本题考查了扇形的面积,等边三角形等知识.解题的关键在于用扇形表示阴影面积.二、填空题1、【分析】先列表,再利用表格信息得到所有的等可能的结果数与符合条件的结果数,再利用概率公式进行计算即可.【详解】解:列表如下:12321+2=32+2=42+3=533+1=43+2=53+3=644+1=54+2=64+3=7可得:所有的等可能的结果数有9种,而和为5的结果数有3种,摸出的这两个小球标记的数字之和为5的概率为:故答案为:【点睛】本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“列表或画树状图的方法”是解本题的关键.2、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.【详解】解:如图作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案为:60.【点睛】本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.3、【分析】过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.【详解】如图所示,是正三角形,故O是的中心,,∵正三角形的边长为2,OE⊥AB∴,,∴,由勾股定理得:,∴,∴,∴(负值舍去).故答案为:.【点睛】本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.4、②③④【分析】根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.【详解】∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,∴∠CMH=90°,∵四边形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可证,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,无法确定HD=2BG,故①错误;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正确;∵△CMH≌△CDH,BD是正方形的对角线,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根据对角互补的四边形内接于圆,∴H,F,E,G四点在同一个圆上,故③正确;∵正方形ABCD的边长为1,∴=1=,∠GAH=90°,AC=取GH的中点P,连接PA,∴GH=2PA,∴=,∴当PA取最小值时,有最大值,连接PC,AC,则PA+PC≥AC,∴PA≥AC-PC,∴当PC最大时,PA最小,∵直径是圆中最大的弦,∴PC=1时,PA最小,∴当A,P,C三点共线时,且PC最大时,PA最小,∴PA=-1,∴最大值为:1-(-1)=2-,∴四边形CGAH面积的最大值为2,∴④正确;故答案为:②③④.【点睛】本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.5、8.4【分析】首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.【详解】解:假设不规则图案面积为xm2,由已知得:长方形面积为24m2,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:=0.35,解得x=8.4.估计不规则图案的面积大约为8.4m2.故答案为:8.4.【点睛】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.6、65【分析】连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.【详解】解:如图所示:连接OA,OC,OB,∵PA、PB、DE与圆相切于点A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案为:65.【点睛】题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.7、20【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.【详解】∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案为20.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.三、解答题1、(1)C(2)(3)【分析】(1)作出图形,根据切线的定义结合“关联点”即可求解;(2)根据题意,为等边三角形,则仅与相切时,和有“关联点”,进而求得半径r的取值范围;(3)根据关联点以及切线的性质,直径所对的角是直角,找到点的运动轨迹是以为圆心半径为的半圆在轴上的部分,进而即可求得的值.(1)解:如图,,,,,,轴,.的半径为2,直线与相切直线l和的“关联点”是点故答案为:(2)如图,根据题意与有“关联点”,则与相切,且与相离,是等边三角形为的中点,则当与相切时,则点为的内心半径r的取值范围为:(3)如图,设和直线m的“关联点”为,,交轴于点,是的切线,的圆心为点,半径为t,轴是的切线点的运动轨迹是以为圆心半径为的半圆在轴上的部分,则点,在直线上,当直线与相切时,即当点与点重合时,最大,此时与轴交于点,当点运动到点时,则过点,则解得b的取值范围为:【点睛】本题考查了切线的性质与判定,切线长定理,勾股定理,一次函数与坐标轴交点问题,等边三角形的性质,等边三角形的内心的性质,掌握以上知识是解题的关键.2、见解析【分析】根据几何体的三视图画法作图.【详解】解:如图,.【点睛】此题考查了画小正方体组成的几何体的三视图,正确掌握几何体的三视图的画图方法是解题的关键.3、(1)3种可能,分别是“微信”“QQ”,“电话”(2)【分析】(1)用例举法可得甲,乙两位同学选择沟通方式都有3种可能.(2)画树状图展示所有9种等可能的结果数,再找出恰好选中同一种沟通方式的结果数,然后根据概率公式求解.(1)解:甲,乙两位同学选择沟通方式都有3种可能,分别是“微信”“QQ”,“电话”.(2)解:画出树状图,如图所示所有情况共有9种情况,其中恰好选择同一种沟通方式的共有3种情况,故两人恰好选中同一种沟通方式的概率为.【点睛】本题考查了判断简单随机事件的可能性,利用列表法与树状图法求解等可能事件的概率;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.4、(1)①;②(2)不成立,【分析】(1)①由直角三角形的性质可得出答案;②过点E作ME⊥EC交CA的延长线于M,由旋转的性质得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,证明△FEC≌△AEM(SAS),由全等三角形的性质得出CF=AM,由等腰直角三角形的性质可得出结论;(2)过点F作FH⊥BC交BC的延长线于点H.证明△ABE≌△EHF(AAS),由全等三角形的性质得出FH=BE,EH=AB=BC,由等腰直角三角形的性质可得出结论;(1)①∵,,,∴,∵sin∠EAB=∴,故答案为:30°;②.如图1,过点E作交CA的延长线于M,∵,,∴,∴,∴,∴,∵将线段AE绕点E顺时针旋转90°得到EF,∴,,∴,在△FEC和△AEM中,∴,∴,∴,∵为等腰直角三角形,∴,∴;故答案为:;(2)不成立.如图2,过点F作交BC的延长线于点H.∴,,∵,∴,在△FEC和△AEM中,∴,∴,,∴,∴为等腰直角三角形,∴.又∵,即.【点睛】本题考查了旋转的性质,解直角三角形,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的面积,熟练掌握旋转的性质是解题的关键.5、(1)50,,图见解析(2)36(3)【分析】(1)利用A选项的人数和A选项所占的百分数求解调查的家长人数,再由B选项所占的百分数求解B选项的人数,进而可求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025新外研版初中英语七年级下册知识点归纳总结(复习必背)
- 广州花都城投产融商业投资有限公司招聘考试真题2024
- 跨境电商人才招聘解决方案
- 长治急救知识培训班课件
- 难点解析-人教版八年级物理上册第4章光现象章节练习试题(解析卷)
- 山东注册环保工程师考试(大气污染防治专业案例)全真模拟题库及答案(2025年)
- 难点解析-人教版八年级物理上册第5章透镜及其应用-透镜单元测试试卷(详解版)
- 2025年燃气经营企业从业人员专业考试考前模拟试题及答案
- 2025金属非金属矿山主要负责人和安全生产管理人员考试综合练习题及答案
- 2025年煤矿安全生产管理人员安全生产知识和管理能力考试测试题及答案
- 【历年真题】2018年10月00688设计概论自考试卷
- 2023年浙江国科大杭州高等研究院招聘12人笔试参考题库(共500题)答案详解版
- 2023第八届全国学生学宪法讲宪法活动竞赛题库(汇总)
- GJB9001C-2017国军标标准培训讲义
- 《妇产科学课件:宫颈癌的筛查与防治》
- 服务型制造标准体系建设指南(2023年)征
- GA/T 2060-2023法庭科学毛发中甲基苯丙胺等11种毒品及代谢物检验液相色谱-质谱法
- 工程监理大纲监理方案服务方案
- C型钢检验报告
- 主体结构验收方案(示范文本)
- 八年级美术PPT课件 荷兰后印象派画家梵高作品介绍 《向日葵》《吃土豆的人》《割耳朵后的自画像》
评论
0/150
提交评论