基础强化人教版8年级数学上册《全等三角形》专项练习试题(含答案及解析)_第1页
基础强化人教版8年级数学上册《全等三角形》专项练习试题(含答案及解析)_第2页
基础强化人教版8年级数学上册《全等三角形》专项练习试题(含答案及解析)_第3页
基础强化人教版8年级数学上册《全等三角形》专项练习试题(含答案及解析)_第4页
基础强化人教版8年级数学上册《全等三角形》专项练习试题(含答案及解析)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《全等三角形》专项练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,C为线段AE上一动点(不与点,重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下结论错误的是(

)A.∠AOB=60° B.AP=BQC.PQ∥AE D.DE=DP2、如图,在△ABC和△DEF中,已知AB=DE,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三个均可以3、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带(

)A.第1块 B.第2块 C.第3块 D.第4块4、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为()A. B. C. D.5、下列说法:①若,则为的中点②若,则是的平分线③,则④若,则,其中正确的有(

)A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、在△ABC中,AB=5,BC边上的中线AD=4,则AC的长m的取值范围是_______.2、如图,的三边,,的长分别是10,15,20,其三条角平分线相交于点O,连接OA,OB,OC,将分成三个三角形,则等于__________.3、如图,在和中,,,直线交于点M,连接.以下结论:①;②;③;④平分.其中正确的是___________(填序号).4、如图,PM⊥OA,PN⊥OB,∠BOC=30°,PM=PN,则∠AOB=_________.5、如图所示,中,.直线l经过点A,过点B作于点E,过点C作于点F.若,则__________.三、解答题(5小题,每小题10分,共计50分)1、在△ABC中,∠ACB=90°,AC=BC,且AD⊥MN于D,BE⊥MN于E.(1)直线MN绕点C旋转到图(1)的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系(不写证明过程);(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系(不写证明过程).2、如图,PA=PB,∠PAM+∠PBN=180°,求证:OP平分∠AOB.3、如图AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.4、如图,在中,D是边上的点,,垂足分别为E,F,且.求证:.5、如图,已知在ΔABC中AB=AC,∠BAC=90°,分别过B,C两点向过A的直线作垂线,垂足分别为E,F.求证:EF=BE+CE.-参考答案-一、单选题1、D【解析】【分析】利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正确;根据△CQB≌△CPA(ASA),得出B正确;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,得出C正确;根据∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D错误.【详解】解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,在△CQB与△CPA中,,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故C正确,∵△CQB≌△CPA,∴AP=BQ,故B正确,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故D错误;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正确.故选:D.【考点】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,解题的关键是找到不变量.2、B【解析】【分析】根据三角形全等的判定中的SAS,即两边夹角.已知两条边相等,只需要它们的夹角相等即可.【详解】要使两三角形全等,已知AB=DE,BC=EF,要用SAS判断,还差夹角,即∠B=∠E.故选:B.【考点】本题考查了三角形全等的判定方法.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主.3、B【解析】【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.【考点】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、A【解析】【分析】延长FE交BC于点D,作EG⊥AB、作EH⊥AC,由EF∥AC可证四边形BDEG是矩形,由角平分线可得ED=EH=EG、∠GAE=∠HAE,从而知四边形BDEG是正方形,再证△GAE≌△HAE、△DCE≌△HCE得AG=AH、CD=CH,设BD=BG=x,则AG=AH=6-x、CD=CH=8-x,由AC=10可得x=2,即BD=DE=2、AG=4,再证△CDF∽△CBA,可得,据此得出EF=DF-DE=.【详解】解:如图,延长FE交BC于点D,作EG⊥AB于点G,作EH⊥AC于点H,∵EF∥AB、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠GAE=∠HAE,∴四边形BDEG是正方形,在△GAE和△HAE中,∵,∴△GAE≌△HAE(AAS),∴AG=AH,同理△DCE≌△HCE,∴CD=CH,设BD=BG=x,则AG=AH=6﹣x、CD=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=BG=2,AG=4,∵DF∥AB,∴△DCF∽△BCA,∴,即,解得:,则EF=DF﹣DE=,故选A【考点】本题主要考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的判定与性质,熟练掌握角平分线的性质和正方形的判定与性质、相似三角形的判定与性质是解题的关键.5、A【解析】【分析】根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于∠AOB的内部时候,此结论成立,故错误;当为负数时,,故错误;若,则,故正确;故选:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.二、填空题1、3<m<13【解析】【分析】延长AD至E,使DE=AD=4,连接CE,利用SAS证明△ABD≌△ECD,可得CE=AB,再根据三角形的三边的关系即可解决问题.【详解】解:如图,延长AD至E,使DE=AD=4,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ADB和△CDE中,,∴△ABD≌△ECD(SAS),∴CE=AB,在△ACE中,AE-CE<AC<AE+CE,∵CE=AB=5,AE=8,∴8-5<AC<8+5,∴3<AC<13,∴3<m<13.故答案为:3<m<13.【考点】此题考查了全等三角形的性质与判定,三角形的三边的关系,解题的关键是利用已知条件构造全等三角形,然后利用三角形的三边的关系解决问题.2、2:3:4【解析】【分析】过点O分别向三边作垂线段,通过角平分线的性质得到三条垂线段长度相等,再通过面积比等于底边长度之比得到答案.【详解】解:过点O分别向BC、BA、AC作垂线段交于D、E、F三点.∵CO、BO、AO分别平分∴∵,,∴故答案为:2:3:4【考点】本题考查了角平分线的性质,往三角形的三边作垂线段并得到面积之比等于底之比是解题关键.3、①②③【解析】【分析】由SAS证明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正确;由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正确;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的对应高相等得出OG=OH,由角平分线的判定方法得∠AMO=∠DMO,假设OM平分∠BOC,则可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故④错误;即可得出结论.【详解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正确;由三角形的内角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正确;作OG⊥AM于G,OH⊥DM于H,如图所示,△AOC≌△BOD,∴结合全等三角形的对应高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假设OM平分∠BOC,则∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④错误;正确的个数有3个;故答案为:①②③.【考点】本题属于三角形的综合题,是中考填空题的压轴题,本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识,证明三角形全等是解题的关键.4、60°或60度【解析】【分析】根据到角的两边距离相等的点在角的平分线上判断出OC平分∠AOB,再根据角平分线的定义可得∠AOB=2∠BOC.【详解】解:∵PM⊥OA,PN⊥OB,PM=PN,∴OC平分∠AOB,∴∠AOB=2∠BOC,又∠BOC=30°,∴∠AOB=60°.故答案为:60°.【考点】本题考查了角平分线的判定,掌握角平分线的判定是解题的关键.5、7【解析】【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【详解】解:∵BE⊥l,CF⊥l,∴∠AEB=∠CFA=90°.∴∠EAB+∠EBA=90°.又∵∠BAC=90°,∴∠EAB+∠CAF=90°.∴∠EBA=∠CAF.在△AEB和△CFA中∵∠AEB=∠CFA,∠EBA=∠CAF,AB=AC,∴△AEB≌△CFA.∴AE=CF,BE=AF.∴AE+AF=BE+CF.∴EF=BE+CF.∵,∴;故答案为:7.【考点】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是熟练掌握所学的知识,正确的证明三角形全等.三、解答题1、(1)证明见详解(2)DE+BE=AD.理由见详解(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等).理由见详解.【解析】【分析】(1)根据题意由垂直得∠ADC=∠BEC=90°,由同角的余角相等得:∠DAC=∠BCE,因此根据AAS可以证明△ADC≌△CEB,结合全等三角形的对应边相等证得结论;(2)由题意根据全等三角形的判定定理AAS推知△ACD≌△CBE,然后由全等三角形的对应边相等、图形中线段间的和差关系以及等量代换证得DE+BE=AD;(3)由题意可知DE、AD、BE具有的等量关系为:DE=BE-AD(或AD=BE-DE,BE=AD+DE等).证明的方法与(2)相同.(1)证明:如图1,∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∵,∴△ADC≌△CEB;∴DC=BE,AD=EC,∵DE=DC+EC,∴DE=BE+AD.(2)解:DE+BE=AD.理由如下:如图2,∵∠ACB=90°,∴∠ACD+∠BCE=90°.又∵AD⊥MN于点D,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE.在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE,AD=CE,∴DE+BE=DE+CD=EC=AD,即DE+BE=AD.(3)解:DE=BE-AD(或AD=BE-DE,BE=AD+DE等).理由如下:如图3,易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD-CE=BE-AD,即DE=BE-AD.【考点】本题属于几何变换综合题,考查等腰直角三角形和全等三角形的性质和判定,熟练掌握全等三角形的四种判定方法是关键:SSS、SAS、AAS、ASA;在证明线段的和与差时,利用全等三角形将线段转化到同一条直线上得出结论.2、详见解析【解析】【分析】过点P分别作PE⊥OM,PF⊥ON,垂足分别为E,F,根据等角的补角相等可得出∠PAE=∠PBF,结合∠AEP=∠BFP、PA=PB即可证出△APE≌△BPF(AAS),根据全等三角形的性质可得出PE=PF,进而可证出OP平分∠AOB.【详解】如图,过点P分别作PE⊥OM,PF⊥ON,垂足分别为E,F,则∠PEA=∠PFB=90°.又∵∠PAM+∠PBN=180°,∠PBF+∠PBN=180°,∴∠PAM=∠PBF,即∠PAE=∠PBF.在△PAE与△PBF中,,∴△PAE≌△PBF(AAS).∴PE=PF.又∵PE⊥OM,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论