基础强化人教版8年级数学上册《全等三角形》同步练习试卷_第1页
基础强化人教版8年级数学上册《全等三角形》同步练习试卷_第2页
基础强化人教版8年级数学上册《全等三角形》同步练习试卷_第3页
基础强化人教版8年级数学上册《全等三角形》同步练习试卷_第4页
基础强化人教版8年级数学上册《全等三角形》同步练习试卷_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《全等三角形》同步练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,,,要使,直接利用三角形全等的判定方法是A.AAS B.SAS C.ASA D.SSS2、如图是作的作图痕迹,则此作图的已知条件是(

)A.已知两边及夹角 B.已知三边 C.已知两角及夹边 D.已知两边及一边对角3、如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠24、如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为(

)A. B. C.10 D.85、如图是用直尺和圆规作一个角等于已知角的示意图,说明的依据是(

)A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,已知,请你添加一个条件,使得,你添加的条件是_____.(不添加任何字母和辅助线)2、如图所示,在中,D是的中点,点A、F、D、E在同一直线上.请添加一个条件,使(不再添其他线段,不再标注或使用其他字母),并给出证明.你添加的条件是______3、如图,在中,,AD是的角平分线,过点D作,若,则______.4、如图,在与中,,,,若,则的度数为________.5、如图,是一个中心对称图形,A为对称中心,若,则________,________.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,AB⊥AC,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图1所示)求证:DE=BD+CE;(2)若B、C在DE的两侧(如图2所示),其他条件不变,则DE,BD,CE具有怎样的等量关系?写出等量关系,不需证明.2、如图,和都是等边三角形,连接与,延长交于点H.(1)证明:;(2)求的度数;(3)连接,求证:平分.3、已知Rt△ABC中,∠BAC=90°,AB=AC,点E为△ABC内一点,连接AE,CE,CE⊥AE,过点B作BD⊥AE,交AE的延长线于D.(1)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求∠EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DG⊥FH,交FH的延长线于点G,若GH:FH=6:5,△FHM的面积为30,∠EHB=∠BHG,求线段EH的长.4、如图,点B、C、D在同一直线上,△ABC、△ADE是等边三角形,CE=5,CD=2(1)证明:△ABD≌△ACE;(2)求∠ECD的度数;(3)求AC的长.5、如图,已知,,,求证:.-参考答案-一、单选题1、B【解析】【分析】根据平行线性质得出∠ABD=∠CDB,再加上AB=DC,BD=DB,根据全等三角形的判定定理SAS即可推出△ABD≌△CDB,从而推出∠A=∠C,即可得出答案.【详解】,,在和中,,≌,,故选B.【考点】本题考查了平行线性质、全等三角形的判定与性质的应用,熟练掌握全等三角形的判定与性质定理是解题的关键.2、C【解析】【分析】观察的作图痕迹,可得此作图的条件.【详解】解:观察的作图痕迹,可得此作图的已知条件为:∠α,∠β,及线段AB,故已知条件为:两角及夹边,故选C.【考点】本题主要考查三角形作图及三角形全等的相关知识.3、A【解析】【分析】利用平行四边形的性质以及全等三角形的判定分别得出即可.【详解】解:A、若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以错误,符合题意,B、若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以正确,不符合题意;C、若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以正确,不符合题意;D、若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以正确,不符合题意;故选:A.【考点】本题考查了平行四边形的性质、全等三角形的判定,解题的关键是掌握三角形的判定定理.4、A【解析】【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【详解】解:如图,连结AE,设AC交EF于O,依题意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因为EF为线段AC的中垂线,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考点】本题考查了全等三角形的判定、勾股定理,熟练掌握是解题的关键.5、B【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'.【详解】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选B.【考点】本题主要考查了尺规作图—作已知角相等的角,解题的关键在于能够熟练掌握全等三角形的判定条件.二、填空题1、或或.【解析】【分析】根据图形可知证明已经具备了一个公共角和一对相等边,因此可以利用ASA、SAS、AAS证明两三角形全等.【详解】∵,,∴可以添加,此时满足SAS;添加条件,此时满足ASA;添加条件,此时满足AAS,故答案为或或;【考点】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.2、ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF)【解析】【分析】根据三角形全等的判定方法SAS或AAS或ASA定理添加条件,然后证明即可.【详解】解:∵D是的中点,∴BD=DC①若添加ED=FD在△BDE和△CDF中,,∴△BDE≌△CDF(SAS);②若添加∠E=∠CFD在△BDE和△CDF中,,∴△BDE≌△CDF(AAS);③若添加∠DBE=∠DCF在△BDE和△CDF中,,∴△BDE≌△CDF(ASA);故答案为:ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF).【考点】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.3、7【解析】【分析】先利用角平分线性质证明CD=DE,再求出的值即可.【详解】解:∵AD平分∠BAC交BC于点D,,DE⊥AB,∴CD=ED.∵,∴BD+CD=7,∴,故答案为:7.【考点】本题主要考查了角平分线的性质,解题的关键是熟练掌握角平分线的性质.4、40°【解析】【分析】先利用HL定理证明Rt△ABC≌Rt△DEF,得出∠D的度数,再根据直角三角形两锐角互余即可得出的度数.【详解】解:在Rt△ABC与Rt△DEF中,∵∠B=∠E=90°,AC=DF,AB=DE,∴Rt△ABC≌Rt△DEF(HL)∴∠D=∠A=50°,∴∠DFE=90°-∠D=90°-50°=40°.故答案为:40°.【考点】此题主要考查直角三角形全等的HL定理.理解斜边和一组直角边对应相等的两个直角三角形全等是解题关键.5、

30°

2【解析】【分析】根据中心对称图形的性质,得到,再由全等三角形的性质解题即可.【详解】解:∵A为对称中心,∴绕点A旋转能与重合,∴,∴,,∴.【考点】本题考查中心对称图形的性质、全等三角形的性质等知识,是基础考点,掌握相关知识是解题关键.三、解答题1、(1)见解析(2)DE=CE-BD【解析】【分析】(1)根据AAS证明△ADB≌△CEA,可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出结论;(2)由条件可以得出∠ADB=∠CEA=90°,∠BAD=∠ACE,再由AB=AC就可以得出△ADB≌△CEA,就可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出DE=CE-BD.(1)∵AB⊥AC,BD⊥DE,CE⊥DE∴∠BAC=90°,∠ADB=∠AEC=90°∴∠ACE+∠CAE=90°,∠BAD+∠CAE=90°,∴∠BAD=∠ACE,在△ADC与△BEC中,∠ADB=∠AEC=90°,∠BAD=∠ACE,AB=AC,∴△ADB≌△CEA(AAS),∴AD=CE,BD=AE,∵DE=AD+AE,∴DE=BD+CE;(2)DE=CE-BD理由:∵BD⊥AD,CE⊥AD,∴∠ADB=∠CEA=90°.∵AB⊥AC,∴∴∠BAD+∠CAE=90°.∵∠CAE+∠ACE=90°,∴∠BAD=∠ACE.在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE.∵AD=AE+ED,∴DE=AD-AE=CE-BD.【考点】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是解答本题的关键.2、(1)见解析(2)60°(3)见解析【解析】【分析】(1)由△ABD和△BCE都是等边三角形得BA=BD,BE=BC,∠ABD=∠EBC=60°,所以∠ABE=∠DBC=60°−∠DBE,即可根据全等三角形的判定定理“SAS”证明△ABE≌△DBC,得AE=DC;(2)由△ABE≌△DBC得∠BAE=∠BDC,因为∠BAD=∠BDA=60°,所以∠HAD+∠HDA==120°,所以∠AHD=60°;(3)作BF⊥HA于点F,BG⊥HC交HC的延长线于点G,则∠AFB=∠BFH=∠G=90°,即可证明△BAF≌△BDG,则BF=BG,根据“到角的两边距离相等的点在角的平分线上”即可证明HB平分∠AHC.(1)证明:如图1,∵△ABD和△BCE都是等边三角形,∴BA=BD,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=60°−∠DBE,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC.(2)解:如图1,由(1)得△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BAD=∠BDA=60°,∴∠HAD+∠HAD=∠HAD+∠BDC+∠BDA=∠HAD+∠BAE+∠BDA=∠BAD+∠BDA=120°,∴∠AHD=180°−(∠HAD+∠HDA)=60°.(3)证明:如图2,作BF⊥HA于点F,BG⊥HC交HC的延长线于点G,则∠AFB=∠BFH=∠G=90°,由△ABE≌△DBC得∠BAF=∠BDG,在△BAF和△BDG中,,∴△BAF≌△BDG(AAS),∴BF=BG,∴点B在∠AHC的平分线上,∴HB平分∠AHC.【考点】此题考查等边三角形的性质、全等三角形的判定与性质、到角的两边距离相等的点在角的平分线上等知识,证明三角形全等是解题的关键.3、(1)见解析;(2)∠EDH=45°;(3)EH=10.【解析】【分析】(1)根据全等三角形的判定得出△CAE≌△ABD,进而利用全等三角形的性质得出AE=BD即可;(2)根据全等三角形的判定得出△AEH≌△BDH,进而利用全等三角形的性质解答即可;(3)过点M作MS⊥FH于点S,过点E作ER⊥FH,交HF的延长线于点R,过点E作ET∥BC,根据全等三角形判定和性质解答即可.【详解】证明:(1)∵CE⊥AE,BD⊥AE,∴∠AEC=∠ADB=90°,∵∠BAC=90°,∴∠ACE+CAE=∠CAE+∠BAD=90°,∴∠ACE=∠BAD,在△CAE与△ABD中∴△CAE≌△ABD(AAS),∴AE=BD;(2)连接AH∵AB=AC,BH=CH,∴∠BAH=,∠AHB=90°,∴∠ABH=∠BAH=45°,∴AH=BH,∵∠EAH=∠BAH﹣∠BAD=45°﹣∠BAD,∠DBH=180°﹣∠ADB﹣∠BAD﹣∠ABH=45°﹣∠BAD,∴∠EAH=∠DBH,在△AEH与△BDH中∴△AEH≌△BDH(SAS),∴EH=DH,∠AHE=∠BHD,∴∠AHE+∠EHB=∠BHD+∠EHB=90°即∠EHD=90°,∴∠EDH=∠DEH=;(3)过点M作MS⊥FH于点S,过点E作ER⊥FH,交HF的延长线于点R,过点E作ET∥BC,交HR的延长线于点T.∵DG⊥FH,ER⊥FH,∴∠DGH=∠ERH=90°,∴∠HDG+∠DHG=90°∵∠DHE=90°,∴∠EHR+∠DHG=90°,∴∠HDG=∠HER在△DHG与△HER中∴△DHG≌△HER(AAS),∴HG=ER,∵ET∥BC,∴∠ETF=∠BHG,∠EHB=∠HET,∠ETF=∠FHM,∵∠EHB=∠BHG,∴∠HET=∠ETF,∴HE=HT,在△EFT与△MFH中,∴△EFT≌△MFH(AAS),∴HF=FT,∴,∴ER=MS,∴HG=ER=MS,设GH=6k,FH=5k,则HG=ER=MS=6k,,k=,∴FH=5,∴HE=HT=2HF=10.【考点】本题考查全等三角形的判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论