基础强化浙江省义乌市中考数学通关题库附参考答案详解(综合题)_第1页
基础强化浙江省义乌市中考数学通关题库附参考答案详解(综合题)_第2页
基础强化浙江省义乌市中考数学通关题库附参考答案详解(综合题)_第3页
基础强化浙江省义乌市中考数学通关题库附参考答案详解(综合题)_第4页
基础强化浙江省义乌市中考数学通关题库附参考答案详解(综合题)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省义乌市中考数学通关题库考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、抛物线的对称轴为直线.若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()A. B. C. D.2、把抛物线的图象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是(

)A. B. C. D.3、如图,在中,,,,以点为圆心,为半径的圆与所在直线的位置关系是(

)A.相交 B.相离 C.相切 D.无法判断4、已知点在半径为8的外,则(

)A. B. C. D.5、已知抛物线P:,将抛物线P绕原点旋转180°得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是(

)A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、如图,是的直径,,是上的点,且,分别与,相交于点,,则下列结论一定成立的是(

)A. B. C.平分D. E.2、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的有()A.2a+b<0 B.abc>0 C.4a﹣2b+c>0 D.a+c>03、如图,AB是圆O的直径,点G是圆上任意一点,点C是的中点,,垂足为点E,连接GA,GB,GC,GD,BC,GB与CD交于点F,则下列表述正确的是(

)A. B.C. D.4、如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论中正确的结论是()A.△BO′A可以由△BOC绕点B逆时针旋转60°得到B.点O与O′的距离为4C.∠AOB=150°D.S四边形AOBO′=6+3E.S△AOC+S△AOB=6+5、下列条件中,不能确定一个圆的是(

)A.圆心与半径 B.直径C.平面上的三个已知点 D.三角形的三个顶点第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,在中,,,则图中阴影部分的面积是_________.(结果保留)2、小亮同学在探究一元二次方程的近似解时,填好了下面的表格:根据以上信息请你确定方程的一个解的范围是________.3、抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是_____.4、若函数图像与x轴的两个交点坐标为和,则__________.5、关于的一元二次方程的一个根是2,则另一个根是__________.四、解答题(6小题,每小题10分,共计60分)1、冰墩墩是2022年北京冬季奥运会的吉祥物.冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.①求w关于x的函数解析式,并求每周总利润的最大值;②当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围.2、受“新冠”疫情的影响,某销售商在网上销售A、B两种型号的“手写板”,获利颇丰.已知A型,B型手写板进价、售价和每日销量如表格所示:进价(元/个)售价(元/个)销量(个/日)A型600900200B型8001200400根据市场行情,该销售商对A手写板降价销售,同时对B手写板提高售价,此时发现A手写板每降低5就可多卖1,B手写板每提高5就少卖1,要保持每天销售总量不变,设其中A手写板每天多销售x,每天总获利的利润为y(1)求y、x间的函数关系式并写出x取值范围;(2)要使每天的利润不低于234000元,直接写出x的取值范围;(3)该销售商决定每销售一个B手写板,就捐a元给因“新冠疫情”影响的困难家庭,当时,每天的最大利润为229200元,求a的值.3、根据下列条件,求二次函数的解析式.(1)图象经过(0,1),(1,﹣2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);4、阅读下面内容,并答题:我们知道,计算n边形的对角线条数公式为n(n-3).如果一个n边形共有20条对角线,那么可以得到方程n(n-3)=20.解得n=8或n=-5(舍去),∴这个n边形是八边形.根据以上内容,问:(1)若一个多边形共有9条对角线,求这个多边形的边数;(2)小明说:“我求得一个n边形共有10条对角线”,你认为小明同学的说法正确吗?为什么?5、如图,已知二次函数的图象经过点.(1)求的值和图象的顶点坐标.

(2)点在该二次函数图象上.

①当时,求的值;②若到轴的距离小于2,请根据图象直接写出的取值范围.6、安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:(1)求与之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?-参考答案-一、单选题1、A【解析】【分析】根据给出的对称轴求出函数解析式为,将一元二次方程的实数根可以看做与函数的有交点,再由的范围确定的取值范围即可求解;【详解】∵的对称轴为直线,∴,∴,∴一元二次方程的实数根可以看做与函数的有交点,∵方程在的范围内有实数根,当时,,当时,,函数在时有最小值2,∴,故选A.【考点】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题,借助数形结合解题是关键.2、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:∵抛物线的顶点坐标为(2,1),∴向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)∴所得抛物线解析式是.故选:A.【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便.3、A【解析】【分析】过点C作CD⊥AB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解.【详解】解:过点C作CD⊥AB于点D,如图所示:∵,,,∴,根据等积法可得,∴,∵以点为圆心,为半径的圆,∴该圆的半径为,∵,∴圆与AB所在的直线的位置关系为相交,故选A.【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键.4、A【解析】【分析】根据点P与⊙O的位置关系即可确定OP的范围.【详解】解:∵点P在圆O的外部,∴点P到圆心O的距离大于8,故选:A.【考点】本题主要考查点与圆的位置关系,关键是要牢记判断点与圆的位置关系的方法.5、A【解析】【分析】先求出抛物线的解析式,再列出不等式,求出其解集或,从而可得当x=1时,,有成立,最后求出a的取值范围.【详解】解:∵抛物线P:,将抛物线P绕原点旋转180°得到抛物线,∴抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P’上,则点(-x,-y)一定在抛物线P上,∴∴抛物线的解析式为,∵当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即令,∴,解得:或,设,∵开口向下,且与x轴的两个交点为(0,0),(4a,0),即当时,要恒成立,此时,∴当x=1时,即可,得:,解得:,又∵∴故选A【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.二、多选题1、ACDE【解析】【分析】根据直径的性质,垂径定理等知识一一判断即可;【详解】∵AB是直径,∴∠ADB=90°,∴AD⊥BD,故A正确;∵C,D是⊙O上的点,∴与不一定相等,∴∠A与∠CBA不一定相等,∵OB=OC,∴∠C=∠CBA,∴∠A与∠C不一定相等,∵∠AOC=∠C+∠CBA∠AEC=∠A+∠CBA∴∠AOC与∠AEC不一定相等,故B选项错误;∵OC∥BD,BD⊥AD,∴OC⊥AD,∴,AF=DF,故D正确∴∠ABC=∠CBD,即CB平分∠ABD,故C正确,∵AF=DF,AO=OB,∴BD=2OF,故E正确,故选:ACDE.【考点】本题考查直径的性质、垂径定理、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、AD【解析】【分析】结合图象,根据函数的开口方向、与y轴的交点、对称轴的位置、和当x=-2时,x=-1时,对应y值的大小依次可判断.【详解】解:根据开口方向可知,根据图象与y轴的交点可知,根据对称轴可知:,∴,∴,,故A选项正确;∴abc<0,故B选项错误;根据图象可知,当x=-2时,,故C选项错误;根据图象可知,当x=-1时,,∴,故D选项正确.故选:AD.【考点】本题考查了二次函数图象判定式子的正负.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点确定,注意特殊点的函数值.3、ACD【解析】【分析】根据垂径定理和圆周角定理可以判断A,根据圆周角定理可以判断B,根据圆周角定理、垂径定理以及等角对等边,即可判断C,根据圆周角定理、垂径定理以及平行线的判定,即可判断D.【详解】解:∵AB是圆O的直径,,∴,∴,故A正确;∵AB是圆O的直径,,∴,∵,即,也没有其他条件可以证得和的另外一组内角对应相等,∴不能证得,故B不正确;∵点C是的中点,∴,∴,∵AB是圆O的直径,,∴,∴,∴,∴,故C正确;∵点C是的中点,∴,∵AB是圆O的直径,,∴,∴,∴,∴,故D正确.故选ACD.【考点】本题主要考查了垂径定理、圆周角定理、等腰三角形的判定以及平行线的判定.4、ABCE【解析】【分析】证明可判断证明是等边三角形,可判断利用是等边三角形,证明可判断由是等边三角形,可得四边形的面积,可判断如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为的直角三角形,从而可判断【详解】解:由题意得:为等边三角形,△BO′A可以由△BOC绕点B逆时针旋转60°得到,故符合题意;如图,连接,由是等边三角形,则点O与O′的距离为4,故符合题意;故符合题意;如图,过作于是等边三角形,S四边形AOBO′=故不符合题意;如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为的直角三角形,同理可得:故符合题意;故选:【考点】本题考查的是等边三角形的判定与性质,旋转的性质,勾股定理与勾股定理的逆定理的应用,全等三角形的判定与性质,熟练的做出正确的辅助线是解题的关键.5、C【解析】【分析】根据不在同一条直线上的三个点确定一个圆,已知圆心和直径所作的圆是唯一的进行判断即可得出答案.【详解】解:A、已知圆心与半径能确定一个圆,不符合题意;B、已知直径能确定一个圆,不符合题意;C、平面上的三个已知点,不能确定一个圆,符合题意;D、已知三角形的三个顶点,能确定一个圆,不符合题意;故选C.【考点】本题考查了确定圆的条件,解题的关键是分类讨论.三、填空题1、【解析】【分析】由,根据圆周角定理得出,根据S阴影=S扇形AOB-可得出结论.【详解】解:∵,∴,∴S阴影=S扇形AOB-,故答案为:.【考点】本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键.2、【解析】【分析】观察表格可知,随x的值逐渐增大,ax2+bx+c的值在3.24~3.25之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在3.24<x<3.25之间.【详解】根据表格可知,ax2+bx+c=0时,对应的x的值在3.24<x<3.25之间.故答案为3.24<x<3.25.【考点】本题考查了一元二次方程的知识点,解题的关键是根据表格求出一元二次方程的近似根.3、﹣3<x<1【解析】【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.【详解】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.【考点】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键.4、-2【解析】【分析】根据二次函数图象对称轴所在的直线与x轴的交点的坐标,即为它的图象与x轴两交点之间线段中点的横坐标,即可求得.【详解】解:函数图像与x轴的两个交点坐标为和由对称轴所在的直线为:解得故答案为:-2.【考点】本题考查了二次函数的性质及中点坐标的求法,熟练掌握和运用二次函数的性质及中点坐标的求法是解决本题的关键.5、-3【解析】【分析】由题意可把x=2代入一元二次方程进行求解a的值,然后再进行求解方程的另一个根.【详解】解:由题意把x=2代入一元二次方程得:,解得:,∴原方程为,解方程得:,∴方程的另一个根为-3;故答案为-3.【考点】本题主要考查一元二次方程的解及其解法,熟练掌握一元二次方程的解及其解法是解题的关键.四、解答题1、(1)每个冰墩墩钥匙扣的进价为12元(2)①,最大值为1960元;②每个冰墩墩玩偶售价x的范围为:【解析】【分析】(1)设每个冰墩墩钥匙扣的进价为x元,根据题意列出分式方程,进而计算求解即可;(2)①根据题意列出一次函数关系,根据一次函数的性质求得最大利润即可;②根据题意列出方程,根据二次函数的性质求得的范围,根据题意取整数解即可.(1)设每个冰墩墩钥匙扣的进价为x元,由题意得:,解得,经检验,是原方程的解且符合题意,答:每个冰墩墩钥匙扣的进价为12元;(2)①∵且x是大于20的正整数∴当时,w有最大值,最大值为1960元②售价为24元或25元或26元或27元或28元.解析如下:②由题意得,,解得或29∵抛物线开口向下,x是大于20的正整数∴当时,每周总利润不低于1870元,【考点】本题考查了分式方程的应用,二次函数的应用,一次函数的应用,根据题意列出方程或关系式是解题的关键.2、(1)(),且x为整数;(2),且x为整数;(3)a=30【解析】【分析】(1)根据题意列函数关系式和不等式组,于是得到结论;(2)根据题意列方程和不等式,于是得到结论;(3)根据题意列函数关系式,然后根据二次函数的性质即可得到结论.【详解】解:(1)由题意得,,解得,故的取值范围为且为整数;(2)的取值范围为.理由如下:,当时,,,,解得:或.要使,得;,;(3)设捐款后每天的利润为元,则,对称轴为,,,抛物线开口向下,当时,随的增大而增大,当时,最大,,解得.【考点】本题考查了二次函数的应用,一元一次不等式的应用,列函数关系式等等,最大销售利润的问题常利用函数的增减性来解答.3、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先设出抛物线的解析式为y=ax2+bx+c,再将点(0,1),(1,−2),(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式y=a(x−2)2+3,然后把(3,1)代入求出a的值即可.【详解】解:(1)设出抛物线的解析式为y=ax2+bx+c,将(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴抛物线解析式为:y=4x2﹣7x+1;(2)设抛物线解析式为y=a(x﹣2)2+3,把(3,1)代入得:a(3﹣2)2+3=1,解得a=﹣2,所以抛物线解析式为y=﹣2(x﹣2)2+3.【考点】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.4、(1)6(2)错误,理由见解析【解析】【分析】(1)利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论