2025年中考数学总复习《因式分解》真题附答案详解(B卷)_第1页
2025年中考数学总复习《因式分解》真题附答案详解(B卷)_第2页
2025年中考数学总复习《因式分解》真题附答案详解(B卷)_第3页
2025年中考数学总复习《因式分解》真题附答案详解(B卷)_第4页
2025年中考数学总复习《因式分解》真题附答案详解(B卷)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《因式分解》真题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、已知,,那么的值为()A.3 B.6 C. D.2、下列等式中,从左到右是因式分解的是()A. B.C. D.3、下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bxB.x2﹣1+y2=(x﹣1)(x+1)+y2C.ax+bx+c=x(a+b)+cD.y2﹣1=(y+1)(y﹣1)4、下列各式中从左到右的变形,是因式分解的是()A. B.C. D.5、若,则的值为()A.2 B.3 C.4 D.6第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:______.2、已知a=2b﹣5,则代数式a2﹣4ab+4b2﹣5的值是_____.3、由多项式与多项式相乘的法则可知:即:(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b3即:(a+b)(a2﹣ab+b2)=a3+b3①,我们把等式①叫做多项式乘法的立方和公式.同理,(a﹣b)(a2+ab+b2)=a3﹣b3②,我们把等式②叫做多项式乘法的立方差公式.请利用公式分解因式:﹣64x3+y3=___.4、若,则________.5、若m2=n+2021,n2=m+2021(m≠n),那么代数式m3-2mn+n3的值_________.三、解答题(6小题,每小题10分,共计60分)1、分解因式:.2、阅读下列材料:对于某些二次三项式可以采用“配方法”来分解因式,例如:把x2+6x﹣16分解因式,我们可以这样进行:x2+6x-16=x2+2·x·3+32-32-16(加上32,再减去32)=(x+3)2-52(运用完全平方公式)=(x+3+5)(x+3-5)(运用平方差公式)=(x+8)(x-2)(化简)运用此方法解决下列问题:(1)x2﹣10x+(_____)=(x﹣_____)2;(2)把x2﹣8x+12分解因式.(3)已知:a2+b2﹣4a+6b+13=0,求多项式a2﹣6ab+9b2的值.3、分解因式:(1)(2)4、因式分解:5、分解因式:(1)2x2﹣18;(2)3m2n﹣12mn+12n;(3)(a+b)2﹣6(a+b)+9;(4)(x2+9)2﹣36x26、因式分解:81a4-16-参考答案-一、单选题1、D【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.2、B【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.3、D【分析】根据因式分解的定义解答即可.【详解】解:A、x(a﹣b)=ax﹣bx,是整式乘法,故此选项不符合题意;B、x2﹣1+y2=(x﹣1)(x+1)+y2,不是因式分解,故此选项不符合题意;C、ax+bx+c=x(a+b)+c,不是因式分解,故此选项不符合题意;D、y2﹣1=(y+1)(y﹣1),是因式分解,故此选项符合题意.故选D.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.4、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.,单项式不能因式分解,故此选项不符合题意;B.,是因式分解,故此选项符合题意;C.,是整式计算,故此选项不符合题意;D.,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.5、C【分析】把变形为,代入a+b=2后,再变形为2(a+b)即可求得最后结果.【详解】解:∵a+b=2,∴a2-b2+4b=(a-b)(a+b)+4b,=2(a-b)+4b,=2a-2b+4b,=2(a+b),=2×2,=4.故选:C.【点睛】本题考查了代数式求值的方法,同时还利用了整体思想.二、填空题1、【分析】先将原式变形为,再利用提公因式法分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了提公因式法分解因式,熟练掌握因式分解的方法是解决本题的关键.2、20【分析】将a=2b-5变为a-2b=-5,再根据完全平方公式分解a2-4ab+4b2-5=(a-2b)2-5,代入求解.【详解】解:∵a=2b-5,∴a-2b=-5,∴a2-4ab+4b2-5=(a-2b)2-5=(-5)2-5=20.故答案为:20.【点睛】此题考查的是代数式求值,掌握完全平方公式是解此题的关键.3、【分析】根据题意根据立方差公式因式分解即可.【详解】﹣64x3+y3故答案为:【点睛】本题考查了因式分解,根据题意套用立方差公式是解题的关键.4、15【分析】将原式首先提取公因式xy,进而分解因式,将已知代入求出即可.【详解】解:∵x−2y=5,xy=3,∴.故答案为:15.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.5、-2021【分析】将两式m2=n+2021,n2=m+2021相减得出m+n=-1,将m2=n+2021两边乘以m,n2=m+2021两边乘以n再相加便可得出.【详解】解:将两式m2=n+2021,n2=m+2021相减,得m2-n2=n-m,(m+n)(m-n)=n-m,(因为m≠n,所以m-n≠0),m+n=-1,将m2=n+2021两边乘以m,得m³=mn+2021m①,将n2=m+2021两边乘以n,得n³=mn+2021n

②,由①+②得:m³+n³=2mn+2021(m+n),m³+n³-2mn=2021(m+n),m³+n³-2mn=2021×(-1)=-2021.故答案为-2021.【点睛】本题考查因式分解的应用,代数式m3-2mn+n3的降次处理是解题关键.三、解答题1、【分析】先去括号,化简为一般形式,再利用十字相乘法进行因式分解.【详解】解:=x2﹣x﹣12+6=x2﹣x﹣6=.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.2、(1)25;5(2)(x-2)(x﹣6);(3)121【分析】(1)利用配方法计算;(2)利用配方法把原式变形,根据平方差公式进行因式分解;(3)利用配方法把原式变形,求出a,b,代入即可【详解】解:(1)x2﹣10x+(25)=(x﹣5)2;故答案为:25;5(2)原式=x2﹣8x+16﹣16+12=(x﹣4)2﹣4=(x﹣4+2)(x﹣4﹣2)=(x-2)(x﹣6);(3)a2+b2﹣4a+6b+13=0a2﹣4a+4+b2+6b+9=0(a﹣2)2+(b+3)2=0,∴a=2,b=-3;【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.3、(1);(2)【分析】(1)直接利用完全平方和公式进行因式分解;(2)提取公因式后,再利用平方差公式进行因式分解.【详解】解:(1)(2).【点睛】本题考查了因式分解,解题的关键是根据具体内容选择合适的公式进行因式分解.4、【分析】根据平方差公式“”进行解答即可得.【详解】解:原式=【点睛】本题考查了因式分解,解题的关键是掌握平方差公式.5、(1)2(x+3)(x-3);(2)3n(m-2)2;(3)(a+b-3)2;(4)(x+3)2(x-3)2【分析】(1)原式提取2,再利用平方差公式分解即可;(2)原式提取3n,再利用完全平方公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式利用平方差公式及完全平方公式分解即可.【详解】解:(1)原式=2(x2-9)=2(x+3)(x-3);(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论