




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版9年级数学上册《圆》专题测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AC是⊙O的直径,弦AB//CD,若∠BAC=32°,则∠AOD等于(
)A.64° B.48° C.32° D.76°2、如图,、分别切于点、,点为优弧上一点,若,则的度数为(
)A. B. C. D.3、若某圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,那么圆锥的高为(
)A. B. C. D.4、如图,点A、B、C在⊙O上,且∠ACB=100o,则∠α度数为(
)A.160o B.120o C.100o D.80o5、下列语句,错误的是()A.直径是弦 B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心 D.平分弧的半径垂直于弧所对的弦6、往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为(
)A. B. C. D.7、如图,在中,,cm,cm.是边上的一个动点,连接,过点作于,连接,在点变化的过程中,线段的最小值是(
)A.1 B. C.2 D.8、如图,破残的轮子上,弓形的弦AB为4m,高CD为1m,则这个轮子的半径长为()A.m B.m C.5m D.m9、一个商标图案如图中阴影部分,在长方形中,,,以点为圆心,为半径作圆与的延长线相交于点,则商标图案的面积是(
)A. B.C. D.10、如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为A.60π B.85π C.95π D.169π第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、如图,矩形ABCD的对角线交于点O,以点A为圆心,AB的长为半径画弧,刚好过点O,以点D为圆心,DO的长为半径画弧,交AD于点E,若AC=2,则图中阴影部分的面积为_____.(结果保留π)2、如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)3、如图所示,AB、AC为⊙O的两条弦,延长CA到点D,AD=AB,若∠ADB=35°,则∠BOC=________.4、如图,是的内接正三角形,点是圆心,点,分别在边,上,若,则的度数是____度.5、下列说法①直径是弦;②圆心相同,半径相同的两个圆是同心圆;③两个半圆是等弧;④经过圆内一定点可以作无数条直径.正确的是______填序号.6、如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为___________.7、如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为_____cm.(结果用π表示)8、如图是四个全等的正八边形和一个正方形拼成的图案,已知正方形的面积为4,则一个正八边形的面积为____.9、如图所示的网格由边长为个单位长度的小正方形组成,点、、、在直角坐标系中的坐标分别为,,,则内心的坐标为______.10、如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点出发,沿表面爬到的中点处,则最短路线长为__________.三、解答题(5小题,每小题6分,共计30分)1、如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连接OD,AD.(1)若∠ACB=20°,求的长(结果保留).(2)求证:AD平分∠BDO.2、如下图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是中弦的中点,经过圆心O交圆O于点E,并且.求的半径.3、如图,在中,,的中点.(1)求证:三点在以为圆心的圆上;(2)若,求证:四点在以为圆心的圆上.4、如图,四边形OABC中,.OA=OC,BA=BC.以O为圆心,以OA为半径作☉O(1)求证:BC是☉O的切线:(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与此的延长线交于点F若.①补全图形;②求证:OF=OB.5、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?-参考答案-一、单选题1、A【解析】【分析】由AB//CD,∠BAC=32°,根据平行线的性质,即可求得∠ACD的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠AOD的度数.【详解】解:∵弦AB//CD,∠BAC=32°,∴∠ACD=∠BAD=32°,∴∠AOD=2∠ACD=2×32°=64°.故选:A【考点】此题考查了圆周角定理与平行线的性质.解题的关键是注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.2、C【解析】【分析】要求∠ACB的度数,只需根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB;再根据切线的性质以及四边形的内角和定理即可求解.【详解】解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥AP,OB⊥BP,∴∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠AOB=2∠ACB,∠ACB=∠APB,∴3∠ACB=180°,∴∠ACB=60°,故选:C.【考点】此题考查了切线的性质,圆周角定理,以及四边形的内角和,熟练掌握切线的性质是解本题的关键.3、C【解析】【分析】设圆锥母线长为R,由题意易得圆锥的母线长为,然后根据勾股定理可求解.【详解】解:设圆锥母线长为R,由题意得:∵圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,∴根据圆锥侧面展开图的弧长和圆锥底面圆的周长相等可得:,∴,∴圆锥的高为;故选C.【考点】本题主要考查圆锥侧面展开图及弧长计算公式,熟练掌握圆锥的特征及弧长计算公式是解题的关键.4、A【解析】【分析】在⊙O取点,连接利用圆的内接四边形的性质与一条弧所对的圆心角是它所对的圆周角的2倍,可得答案.【详解】解:如图,在⊙O取点,连接四边形为⊙O的内接四边形,.故选A【考点】本题考查的是圆的内接四边形的性质,同弧所对的圆心角是它所对的圆周角的2倍,掌握相关知识点是解题的关键.5、B【解析】【分析】将每一句话进行分析和处理即可得出本题答案.【详解】A.直径是弦,正确.B.∵在同圆或等圆中,相等的圆心角所对的弧相等,∴相等的圆心角所对的弧相等,错误.C.弦的垂直平分线一定经过圆心,正确.D.平分弧的半径垂直于弧所对的弦,正确.故答案选:B.【考点】本题考查了圆中弦、圆心角、弧度之间的关系,熟练掌握该知识点是本题解题的关键.6、C【解析】【分析】过点O作OD⊥AB于D,交⊙O于E,连接OA,根据垂径定理即可求得AD的长,又由⊙O的直径为,求得OA的长,然后根据勾股定理,即可求得OD的长,进而求得油的最大深度的长.【详解】解:过点O作OD⊥AB于D,交⊙O于E,连接OA,由垂径定理得:,∵⊙O的直径为,∴,在中,由勾股定理得:,∴,∴油的最大深度为,故选:.【考点】本题主要考查了垂径定理的知识.此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决.7、A【解析】【分析】由∠AEC=90°知,点E在以AC为直径的⊙M的上(不含点C、可含点N),从而得BE最短时,即为连接BM与⊙M的交点(图中点E′点),BE长度的最小值BE′=BM−ME′.【详解】如图,由题意知,,在以为直径的的上(不含点、可含点,最短时,即为连接与的交点(图中点点),在中,,,则.,长度的最小值,故选:.【考点】本题主要考查了勾股定理,圆周角定理,三角形的三边关系等知识点,难度偏大,解题时,注意辅助线的作法.8、D【解析】【分析】连接OB,由垂径定理得出BD的长;连接OB,再在中,由勾股定理得出方程,解方程即可.【详解】解:连接OB,如图所示:由题意得:OC⊥AB,∴AD=BD=AB=2(m),在Rt△OBD中,根据勾股定理得:OD2+BD2=OB2,即(OB﹣1)2+22=OB2,解得:OB=(m),即这个轮子的半径长为m,故选:D.【考点】本题主要考查垂径定理的应用以及勾股定理,熟练掌握垂径定理和勾股定理是解题的关键.9、D【解析】【分析】根据题意作辅助线DE、EF使BCEF为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依据面积公式进行计算即可得出答案.【详解】解:作辅助线DE、EF使BCEF为一矩形.则S△CEF=(8+4)×4÷2=24cm2,S正方形ADEF=4×4=16cm2,S扇形ADF==4πcm2,∴阴影部分的面积=24-(16-4π)=.故选:D.【考点】本题主要考查扇形的面积计算,解题的关键是作出辅助线并从图中看出阴影部分的面积是由哪几部分组成的.10、B【解析】【分析】设圆锥的底面圆的半径为r,扇形的半径为R,先根据弧长公式得到=10π,解得R=12,再利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2π•r=10π,解得r=5,然后计算底面积与侧面积的和.【详解】设圆锥的底面圆的半径为r,扇形的半径为R,根据题意得=10π,解得R=12,2π•r=10π,解得r=5,所以该圆锥的全面积=π•52+•10π•12=85π.故选B.【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.二、填空题1、【解析】【分析】由图可知,阴影部分的面积是扇形ABO和扇形DEO的面积之和,然后根据题目中的数据,可以求得AB、OA、DE的长,∠BAO和∠EDO的度数,从而可以解答本题.【详解】解:∵四边形ABCD是矩形,∴OA=OC=OB=OD,∵AB=AO,∴△ABO是等边三角形,∴∠BAO=60°,∴∠EDO=30°,∵AC=2,∴OA=OD=1,∴图中阴影部分的面积为:,故答案为:.【考点】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.2、5π【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积5π.故答案为5π.【考点】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题的关键.3、140°【解析】【分析】在等腰中,根据三角形的外角性质可求出外角的度数;而是同弧所对的圆周角和圆心角,可根据圆周角和圆心角的关系求出的度数.【详解】△ABD中,AB=AD,则:
∴∴故答案为【考点】考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.4、120【解析】【分析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题.【详解】连接OA,OB,作OH⊥AC,OM⊥AB,如下图所示:因为等边三角形ABC,OH⊥AC,OM⊥AB,由垂径定理得:AH=AM,又因为OA=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本题答案为:120.【考点】本题考查圆与等边三角形的综合,本题目需要根据等角的互换将所求问题进行转化,构造辅助线是本题难点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、弧、圆周角的关系需熟练掌握.5、①【解析】【分析】利用圆的有关定义及性质分别判断后即可确定正确的选项.【详解】解:直径是弦,但弦不是直径,故①正确;圆心相同但半径不同的两个圆是同心圆,故②错误;若两个半圆的半径不等,则这两个半圆的弧长不相等,故③错误;经过圆的圆心可以作无数条的直径,故④错误.综上,正确的只有①.故答案为:①【考点】本题考查了圆的知识,了解有关圆的定义及性质是解答本题的关键,难度不大.6、(6,6)【解析】【分析】如图:由题意可得M在AB、BC的垂直平分线上,则BN=CN;证得ON=OB+BN=6,即△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【详解】解:如图∵圆M是△ABC的外接圆∴点M在AB、BC的垂直平分线上,∴BN=CN,∵点A,B,C的坐标分别是(0,4),(4,0),(8,0)∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,点M的坐标为(6,6).故答案为(6,6).【考点】本题考查了三角形的外接圆与外心、坐标与图形性质、等腰直角三角形的判定与性质等知识,其中判定△OMN为等腰直角三角形是解答本题的关键.7、【解析】【分析】先求出圆锥的底面半径,然后根据圆锥的展开图为扇形,结合圆周长公式进行求解即可.【详解】设底面圆的半径为rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案为12π.【考点】本题考查了圆锥的计算,解答本题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系.8、【解析】【分析】根据正方形的性质得到AB=2,根据由正八边形的特点求出∠AOB的度数,过点B作BD⊥OA于点D,根据勾股定理求出BD的长,由三角形的面积公式求出△AOB的面积,进而可得出结论.【详解】解:设正八边形的中心为O,连接OA,OB,如图所示,∵正方形的面积为4,∴AB=2,∵AB是正八边形的一条边,∴∠AOB==45°.过点B作BD⊥OA于点D,设BD=x,则OD=x,OB=OA=x,∴AD=x-x,在Rt△ADB中,BD2+AD2=AB2,即x2+(x-x)2=22,解得x2=2+,∴S△AOB=OA•BD=×x2=+1,∴S正八边形=8S△AOB=8×(+1)=8+8,故答案为:8+8.【考点】本题考查的是正多边形和圆,正方形的性质,三角形面积的计算,根据题意画出图形,利用数形结合求解是解答此题的关键.9、(2,3)【解析】【分析】根据A、B、C三点的坐标建立如图所示的坐标系,计算出△ABC各边的长度,易得该三角形是直角三角形,设BC的关系式为:y=kx+b,求出BC与x轴的交点G的坐标,证出点A与点G关于BD对称,射线BD是∠ABC的平分线,三角形的内心在BD上,设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作ME⊥AB,过点M作MF⊥AC,且ME=MF=r,求出r的值,在△BEM中,利用勾股定理求出BM的值,即可得到点M的坐标.【详解】解:根据A、B、C三点的坐标建立如图所示的坐标系,根据题意可得:AB=,AC=,BC=,∵,∴∠BAC=90°,设BC的关系式为:y=kx+b,代入B,C,可得,解得:,∴BC:,当y=0时,x=3,即G(3,0),∴点A与点G关于BD对称,射线BD是∠ABC的平分线,设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作ME⊥AB,过点M作MF⊥AC,且ME=MF=r,∵∠BAC=90°,∴四边形MEAF为正方形,S△ABC=,解得:,即AE=EM=,∴BE=,∴BM=,∵B(-3,3),∴M(2,3),故答案为:(2,3).【考点】本题考查三角形内心、平面直角坐标系、一次函数的解析式、勾股定理和正方形的判定与性质等相关知识点,把握内心是三角形内接圆的圆心这个概念,灵活运用各种知识求解即可.10、【解析】【分析】将圆锥的侧面展开,设顶点为B',连接BB',AE.线段AC与BB'的交点为F,线段BF是最短路程.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.设∠BAB′=n°.∵=4,∴n=120即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,∴BF=AB•sin∠BAF=6×=,∴最短路线长为.故答案为:.【考点】本题考查了平面展开−最短路径问题,解题时注意把立体图形转化为平面图形的思维.三、解答题1、(1)(2)见解析【解析】【分析】(1)连接,由,得,由弧长公式即得的长为;(2)根据切于点,,可得,有,而,即可得,从而平分.(1)解:连接OA,∵∠ACB=20°,∴∠AOD=40°,∴,.(2)证明:,,切于点,,,,,,平分.【考点】本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公式及圆的切线的性质.2、【解析】【分析】连接CO,利用垂径定理求解再令⊙O的半径为rm,利用勾股定理建立方程求解半径即可得到答案.【详解】解:连接CO.∵M是弦CD的中点,且EM经过圆心O,∴EM⊥CD,且CM=CD=×4=2.在Rt△OCM中,令⊙O的半径为rm,∵OC2=OM2+CM2,∴,解得:r=.【考点】本题考查的是垂径定理的应用,勾股定理的应用,掌握利用垂径定理构建直角三角形是解题的关键.3、(1)见解析;(2)见解析【解析】【分析】(1)连结OC,利用直角三角形斜边中线等于斜边一半可得OA=OB=OC,所以A,B,C三点在以O为圆心,OA长为半径的圆上;(2)连结OD,可得OA=OB=OC=OD,所以A,B,C,D四点在以O为圆心,OA长为半径的圆上.【详解】解:(1)连结OC,在中,,的中点,∴OC=OA=OB,∴三点在以为圆心的圆上;(2)连结OD,∵,∴OA=OB=OC=OD,∴四点在以为圆心的圆上.【考点】此题考查了圆的定义:到定点的距离等于定长的点都在同一个圆上,直角三角形斜边中线的性质.证明几个点共圆,只需要证明这几个点到某个定点的距离相等即可.4、(1)证明见解析(2)①图见解析(2)证明见解析【解析】【分析】(1)连接AC,根据等腰三角形的性质得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根据切线的判定定理证明;(2)①根据题意画出图形;②根据切线长定理得到BA=BC,得到BD是AC的垂直平分线,根据垂径定理、圆心角和弧的关系定理得到∠AOC=120°,根据等腰三角形的判定定理证明结论.【详解】(1)证明:如图1,连接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切线;(2)①解:补全图形如图2;②证明:∵∠OAB=90°,∴BA是⊙O的切线,又BC是⊙O的切线,∴BA=BC,∵BA=BC,OA=OC,∴BD是AC的垂直平分线,∴,∵,∴=,∴∠AOC=120°,∴∠AOB=∠COB=∠COE=60°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业市场活动策划与执行工具集
- 养老护理学技能考试题库及答案
- 办公用品供应及采购管理合作协议
- 代表法考试题及答案
- 境外投资诚信守法经营承诺函4篇
- 项目验收及问题反馈标准流程表
- 走进秋天的画卷写景作文10篇
- 仓库库存管理清单模板库存盘点与补充策略
- 特种设备企业安全培训课件
- 产品质量检查与改进标准化流程模板
- 2025年上海入团考试试题及答案
- 2025年《土地管理法》考试试题及答案解析
- 2025至2030年中国机织服装市场现状分析及前景预测报告
- 妇幼信息安全课件
- 《测绘基础》课件(共八个任务)
- 物业轮岗活动方案
- 医院医疗服务培训
- 中国大麻酚油(CBD油)行业发展监测及投资战略研究报告
- 《工业机器人技术与应用》高职人工智能技术应用专业全套教学课件
- 中医院依法执业管理制度
- 广西b证继续教育考试试题及答案
评论
0/150
提交评论