2025中考数学总复习《概率初步》全真模拟模拟题【各地真题】附答案详解_第1页
2025中考数学总复习《概率初步》全真模拟模拟题【各地真题】附答案详解_第2页
2025中考数学总复习《概率初步》全真模拟模拟题【各地真题】附答案详解_第3页
2025中考数学总复习《概率初步》全真模拟模拟题【各地真题】附答案详解_第4页
2025中考数学总复习《概率初步》全真模拟模拟题【各地真题】附答案详解_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《概率初步》全真模拟模拟题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为(

)A. B. C. D.2、在抛掷一枚均匀硬币的实验中,如果没有硬币,则下列可作实验替代物的是(

)A.一只小球 B.两张扑克牌(一张黑桃,一张红桃)C.一个啤酒瓶盖 D.一枚图钉3、某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕到草鱼的频率稳定在0.5附近,则该鱼塘捞到鲢鱼的概率约为()A. B. C. D.4、从-2,0,2,3中随机选一个数,是不等式的解的概率为(

)A. B. C. D.5、小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是(

)A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是____.2、老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是_______________.3、投掷一枚正方体骰子,朝上的一面是合数的可能性大小是_____.4、不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是___________.5、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:移植总数(n)200500800200012000成活数(m)187446730179010836成活的频率0.9350.8920.9130.8950.903根据表中数据,估计这种幼树移植成活率的概率为___(精确到0.1).三、解答题(5小题,每小题10分,共计50分)1、汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是__________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?2、为了解“停课不停学”期间,学生对线上学习方式的喜好情况,某校随机抽取40名学生进行问卷调查,其统计结果如表:最喜欢的线上学习方式(每人最多选一种)人数直播10录播a资源包5线上答疑8(1)求出a的值;(2)根据调查结果估计该校1000名学生中,最喜欢“线上答疑”的学生人数;(3)在最喜欢“资源包”的学生中,有2名男生,3名女生,现从这5名学生中随机抽取2名学生介绍学习经验,求恰好抽到1名男生和1名女生的概率.3、如图所示,甲、乙两人玩游戏,他们准备了一个可以自由转动的转盘和一个不透明的袋子,转盘分成面积相等的3个扇形,并在每一个扇形内分别标上数﹣1,﹣2,﹣3;袋子中装有除数字以外其他均相同的三个乒乓球,球上标有数字1,2,3.游戏规则:转动转盘,当转盘停止后,指针所指区域的数字与随机从袋中摸出乒乓球的数字之和为0时,甲获胜;其他情况乙获胜.(如果指针恰好指在分界线上,那么重转一次,直到指针指向某一域为止).(1)用画树状图或列表法求甲获胜的概率;(2)这个游戏规则对甲,乙双方公吗?请判断并说明理由.4、如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.5、某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1)“随机抽取1人,甲恰好被抽中”是__________事件;A.不可能

B.必然

C.随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.-参考答案-一、单选题1、A【解析】【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率是.故选:A.【考点】本题考查了概率公式的简单应用,熟知概率=所求情况数与总情况数之比是解题的关键.2、B【解析】【分析】看所给物品得到的可能性与硬币只有正反两面的可能性是否相等即可.【详解】解:A、一只小球,不能出现两种情况,不符合硬币只有正反两面的可能性,故此选项错误;B、两张扑克牌(一张黑桃,一张红桃),符合硬币只有正反两面的可能性,故此选项正确;C、一个啤酒瓶盖,只有压平的瓶盖才可以,不符合硬币只有正反两面的可能性,故此选项错误;D、尖朝上的概率>面朝上的概率,不能做替代物,故此选项错误;故选B.【考点】考查了模拟实验,选择实验的替代物,应从可能性是否相等入手思考.3、D【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x,可得:,∴x=2400,经检验:是原方程的根,且符合题意,∴捞到鲢鱼的概率为:,故选:D.【考点】本题考察了概率、分式方程的知识,解题的关键是熟练掌握概率的定义,通过求解方程,从而得到答案.4、C【解析】【分析】首先确定不等式的解集,然后利用概率公式计算即可.【详解】解:解得:,所以满足不等式的数有2和3两个,所以从-2,0,2,3中随机选一个数,是的解的概率为:,故选:C.【考点】考查了概率公式的知识,解题的关键是正确的求解不等式,难度不大.5、B【解析】【分析】根据题意,分析可得三个只有颜色不同的有盖茶杯,将茶杯和杯盖随机搭配在一起,共321=6种情况,结合概率的计算公式可得答案.【详解】解:根据题意,三个只有颜色不同的有盖茶杯,将茶杯和杯盖随机搭配在一起,共321=6种情况,而三个茶杯颜色全部搭配正确的只是其中一种;故三个茶杯颜色全部搭配正确的概率为.故选B.【考点】本题主要考查概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题1、【解析】【分析】依据选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,可得能拼成一个正方形的概率为.【详解】解:由题可得:随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙.∵a2+2ab+b2=(a+b)2,∴选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,∴能拼成一个正方形的概率为.故答案为:.【考点】本题考查了列举法求概率、完全平方公式的运用,当有两个元素时,可用树形图列举,也可以列表列举.解题的关键是明确题意,找出所求问题需要的条件.2、【解析】【分析】根据简单的概率公式求解即可.【详解】解:卡片中有2张是物理变化,一共有6张卡片,∴是物理变化的概率为:,故答案为:.【考点】题目主要考查简单的概率公式计算,理解题意是解题关键.3、【解析】【分析】正方体骰子共6个数,其中4和6为合数,所以投掷一枚正方体骰子,朝上的一面是合数的可能性大小是.【详解】解:正方体骰子共6个数,合数为4,6共2个,所以投掷一枚正方体骰子,朝上的一面是合数的可能性大小是,故答案为:.【考点】本题考查判断事件发生的可能性大小,利用概率来求解是解题的关键.4、【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有9个小球,其中绿球有7个,∴摸出一个球是绿球的概率是,故答案为:.【考点】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5、0.9【解析】【分析】由题意根据概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率进行分析即可.【详解】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.【考点】本题主要考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意掌握频率=所求情况数与总情况数之比.三、解答题1、(1);(2)【解析】【详解】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.详解:(1)甲队最终获胜的概率是;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.2、(1);(2)喜欢“线上答疑”的学生人数为200人;(3)【解析】【分析】(1)根据四种学习方式的人数之和等于40可求出a的值;(2)用总人数乘以样本中最喜欢“线上答疑”的学生人数所占比例可得答案;(3)列表法展示所有20种等可能的结果数,再找出恰好抽到1名男生和1名女生的结果数,然后利用概率公式求解.(1)解:;(2)解:最喜欢“线上答疑”的学生人数为(人);(3)解:设3个女生分别为女1,女2,女3,2个男生分别为男1,男2,所有可能出现的结果如下表:女1女2女3男1男2女1(女1,女2)(女1,女3)(女1,男1)(女1,男2)女2(女2,女1)(女2,女3)(女2,男1)(女2,男2)女3(女3,女1)(女3,女2)(女3,男1)(女3,男2)男1(男1,女1)(男1,女2)(男1,女3)(男1,男2)男2(男2,女1)(男2,女2)(男2,女3)(男2,男1)从中随机抽取两个同学担任两角色,所有可能的结果有20种,每种结果的可能性都相同,其中,抽到1名男生和1名女生的结果有12种,所以抽到1名男生和1名女生的概率为.【考点】本题考查统计图、列表法或树状图法:利用列表法或画树状图展示所有等可能的结果,再从中选出符合条件的事件数目,利用概率公式求概率.3、(1);(2)游戏不公平,理由见解析【解析】【分析】(1)列举出所有情况,看针所指区域的数字与随机从袋中摸出乒乓球的数字之和为0时数的情况占所有情况的多少即可求得甲获胜的概率;(2)由(1)可得乙获胜的概率,比较即可.【详解】解:(1)解法一:(列表法)由列表法可知:会产生9种结果,它们出现的机会相等,其中和为0的有3种结果.(甲获胜);解法二:(树状图)由树状图可知:会产生9种结果,它们出现的机会相等,其中和为0的有3种结果.(甲获胜);(2)游戏不公平(甲获胜);(乙获胜),(甲获胜)(乙获胜),游戏不公平.【考点】本题考查了求概率,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A);利用概率公式求出相应的概率,概率相等就公平,否则就不公平.4、(1);(2).【解析】【详解】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为=;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:第一次

第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【考点】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.5、(1)C(2)【解析】【分析】(1)根据随机事件的定义即可解决问题;(2)从甲、乙、丙、丁名护士积极报名参加,设甲是共青团员用T表示,其余3人均是共产党员用G表示,从这4名护士中随机抽取2人,所有可能出现的结果共有12种,然后利用树状图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论