强化训练人教版9年级数学上册【旋转】专项测评练习题(含答案解析)_第1页
强化训练人教版9年级数学上册【旋转】专项测评练习题(含答案解析)_第2页
强化训练人教版9年级数学上册【旋转】专项测评练习题(含答案解析)_第3页
强化训练人教版9年级数学上册【旋转】专项测评练习题(含答案解析)_第4页
强化训练人教版9年级数学上册【旋转】专项测评练习题(含答案解析)_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版9年级数学上册【旋转】专项测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题是真命题的是(

)A.一个角的补角一定大于这个角 B.平行于同一条直线的两条直线平行C.等边三角形是中心对称图形 D.旋转改变图形的形状和大小2、下列图形中既是中心对称图形,又是轴对称图形的是(

)A. B.C. D.3、下列四个图形中,中心对称图形是(

)A. B. C. D.4、如图,△OAB中,∠AOB=60°,OA=4,点B的坐标为(6,0),将△OAB绕点A逆时针旋转得到△CAD,当点O的对应点C落在OB上时,点D的坐标为(

)A.(7,3) B.(7,5) C.(5,5) D.(5,3)5、已知点与点关于原点对称,则点的坐标(

)A. B. C. D.6、如图,由个小正方形组成的田字格,的顶点都是小正方形的顶点,在田字格上能画出与成轴对称,且顶点都在小正方形顶点上的三角形的个数共有()A.2个 B.3个 C.4个 D.5个7、下列运动形式属于旋转的是(

)A.在空中上升的氢气球 B.飞驰的火车C.时钟上钟摆的摆动 D.运动员掷出的标枪8、下列交通标识中,不是轴对称图形,是中心对称图形的是()A. B. C. D.9、如图,将绕点逆时针旋转得到,若且于点,则的度数为(

)A. B. C. D.10、下面四个手机应用图标中是轴对称图形的是(

)A. B. C. D.第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是_________.2、将正方形OEFG放在平面直角坐标系中,O是坐标原点,若点E的坐标为,则点G的坐标为_____.3、如图,点E是正方形ABCD边BC上一点,连接AE,将△ABE绕着点A逆时针旋转到△AFG的位置(点F在正方形ABCD内部),连接DG.若AB=10,BE=6,,则CH=___.4、一副三角板如图放置,将三角板ADE绕点A逆时针旋转,使得三角板ADE的一边所在的直线与BC垂直,则的度数为______.5、如图,将绕点O旋转得到,若,则__________,__________,__________.6、在平面直角坐标系中,直角如图放置,点A的坐标为,,每一次将绕点O逆时针旋转90°,第一次旋转后得到,第二次旋转后得到,依次类推,则点的坐标为______.7、如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC为一边作正方形BDEC设正方形的对称中心为O,连接AO,则AO=_____.8、如图,正方形ABCD的边长是5,E是边BC上一点且BE=2,F为边AB上的一个动点,连接EF,以EF为边向右作等边三角形EFG,连接CG,则CG长的最小值为______.9、将图1剪成若干小块,再图2中进行拼接平移后能够得到①、②、③中的__________.10、如图,在平面直角坐标系中,,由绕点顺时针旋转而得,则所在直线的解析式是___.三、解答题(6小题,每小题5分,共计30分)1、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(﹣1,4),B(﹣3,1).(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180°后的线段A2B2.2、在平面直角坐标系中已知抛物线经过点和点,点为抛物线的顶点.(1)求抛物线的表达式及点的坐标;(2)将抛物线关于点对称后的抛物线记作,抛物线的顶点记作点,求抛物线的表达式及点的坐标;(3)是否在轴上存在一点,在抛物线上存在一点,使为顶点的四边形是平行四边形?若存在,请求出点坐标,若不存在,请说明理由.3、如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是,,.(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的;平移△ABC,若点A对应的点的坐标为,画出.(2)若,绕某一点旋转可以得到(1)中的,直接写出旋转中心的坐标:______;4、如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.5、如图,点是的边上的动点,,连接,并将线段绕点逆时针旋转得到线段.(1)如图1,作,垂足在线段上,当时,判断点是否在直线上,并说明理由;(2)如图2,若,,求以、为邻边的正方形的面积.6、如图,在等腰△ABC中,点D为直线BC上一动点(点D不B、C重合),以AD为边向右侧作正方形ADEF,连接CF.【猜想】如图①,当点D在线段BC上时,直接写出CF、BC、CD三条线段的数量关系.【探究】如图②,当点D在线段BC的延长线上时,判断CF、BC,CD三条线段的数量关系,并说明理由.【应用】如图③,当点D在线段BC的反向延长线上时,点A、F分别在直线BC两侧,AE.DF交点为点O连接CO,若,,则.-参考答案-一、单选题1、B【解析】【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案.【详解】解:A、一个角的补角不一定大于这个角,故A错误;B、平行于同一条直线的两条直线平行,故B正确;C、等边三角形是轴对称图形,不是中心对称图形,故C错误;D、旋转不改变图形的形状和大小,故D错误;故选:B.【考点】本题考查了补角的定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,解题的关键是熟练掌握所学的知识,分别进行判断.2、C【解析】【详解】解:选项A,B中的图形是轴对称图形,不是中心对称图形,故A,B不符合题意;选项C中的图形既是轴对称图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意,故选C【考点】本题考查的是轴对称图形与中心对称图形的识别,把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形,掌握“轴对称图形与中心对称图形的定义”是解本题的关键.3、D【解析】【分析】根据中心对称图形的概念结合各图形的特点求解.【详解】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选:D.【考点】本题考查了中心对称图形与轴对称图形的概念.判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4、A【解析】【分析】如图,过点D作DE⊥x轴于点E.证明△AOC是等边三角形,解直角三角形求出DE,CE,可得结论.【详解】解:如图,过点D作DE⊥x轴于点E.∵B(6,0),∴OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,∠ACD=∠AOB=60°,∵∠AOC=60°,∴△AOC是等边三角形,∴OC=OA=4,∠ACO=60°,∴∠DCE=60°,∴CE=CD=3,DE==3,∴OE=OC+CE=4+3=7,∴D(7,3),故选:A.【考点】本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质.5、B【解析】【分析】根据关于原点对称点的坐标变化特征直接判断即可.【详解】解:点与点关于原点对称,则点的坐标为,故选:B.【考点】本题考查了关于原点对称点的坐标,解题关键是明确关于原点对称的两个点横纵坐标都互为相反数.6、C【解析】【分析】因为顶点都在小正方形上,故可分别以大正方形的两条对角线AB、EF及MN、CH为对称轴进行寻找.【详解】分别以大正方形的两条对角线AB、EF及MN、CH为对称轴,作轴对称图形:则△ABM、△ANB、△EHF、△EFC都是符合题意的三角形.故选:C.【考点】考查了利用轴对称涉及图案的知识,关键是根据要求顶点在格点上寻找对称轴,有一定难度,不要漏解.7、C【解析】【分析】根据旋转的定义逐一进行判断即可得到正确的结论.【详解】解:在空气中上升的氢气球,飞驰的火车,运动员掷出标枪属于平移现象,时钟上钟摆的摆动属于旋转现象.故选:C.【考点】本题主要考查关于旋转的知识,题目比较简单,属于基础题目,大部分学生能够正确完成,熟练掌握旋转的定义是解决本题的关键.8、D【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形,又是中心对称图形,故本选项不符合题意;C.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.不是轴对称图形,是中心对称图形,故本选项符合题意.故选:D.【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、C【解析】【分析】由旋转的性质可得∠BAD=55°,∠E=∠ACB=70°,由直角三角形的性质可得∠DAC=20°,即可求解.【详解】解:∵将△ABC绕点A逆时针旋转55°得△ADE,∴∠BAD=55°,∠E=∠ACB=70°,∵AD⊥BC,∴∠DAC=20°,∴∠BAC=∠BAD+∠DAC=75°.故选C.【考点】本题考查了旋转的性质,掌握旋转的性质是本题的关键.10、D【解析】【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【考点】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.二、填空题1、2【解析】【分析】根据中心对称的性质AD=DE及∠D=90゜,由勾股定理即可求得AE的长.【详解】∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE=,故答案为.【考点】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用.2、或【解析】【分析】先利用正方形的性质,利用旋转画出正方形OEFG,从而得到G点的坐标.【详解】把EO绕E点顺时针(或逆时针)旋转90°得到对应点为G(或G´),如图,则G点的坐标为(2,-3)或G′的坐标为(﹣2,3),【考点】本题考查坐标与图形的变换,涉及旋转、正方形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.3、【解析】【分析】由“HL”可证,可得,由“AAS”可证,可得,可得,再由勾股定理可求AP、FN、DH,即可求解.【详解】如图,连接AH,过点F作FN⊥CD于点N,FP⊥AD于点P,将△ABE绕着点A逆时针旋转到△AFG的位置,,,四边形ABCD是正方形,,,又,,,,,,,,,,FN⊥CD,FP⊥AD,,四边形PDNF是矩形,,,,,,,,故答案为:.【考点】本题考查了旋转的性质,正方形的性质、矩形的判定与性质,全等三角形的判定和性质及勾股定理,熟练掌握知识点是解题的关键.4、15°或60°.【解析】【分析】分情况讨论:①DE⊥BC,②AD⊥BC,然后分别计算的度数即可解答.【详解】解:①如下图,当DE⊥BC时,如下图,∠CFD=60°,旋转角为:=∠CAD=60°-45°=15°;(2)当AD⊥BC时,如下图,旋转角为:=∠CAD=90°-30°=60°;【考点】本题考查了垂直的定义和旋转的性质,熟练掌握并准确分析是解题的关键.5、

1

【解析】【分析】根据旋转的性质,旋转前、后的两个图形全等,旋转角相等,可得出答案.【详解】∵∠BAC+∠C=60°∴∠ABC=180°-60°=120°∵△ABC绕点O旋转得到△A′B′C′∴△ABC≌△A′B′C′∴AC=A′C′,∠ABC=∠A′B′C′∵AC=1,∠ABC=120°∴A′C′=1,∠A′B′C′=120°∵△ABC绕点O旋转得到△A′B′C′,∠AOA′=50°,∴∠AOA′=∠BOB′=50°′∵∠A′OB=30°∴∠A′OB′=50°-30°=20°故答案为:1,20°,120°【考点】本题考察了旋转的性质.做题的关键是明白旋转前、后的两个图形全等,找到对应边和对应角;旋转角相等,找到旋转角即可.6、(,)【解析】【分析】由题意可得,(,),根据题意,每旋转四次,点B就又回到第一象限,用可知点在第三象限,即可得到答案.【详解】在直角中,点A的坐标为,,(,)由已知可得:第一次旋转后,如图,在第二象限,(,)第二次旋转后,在第三象限,(,)第三次旋转后,在第四象限,(,)第四次旋转后,在第一象限,(,)......如此,旋转4次一循环点在第三象限,(,)故答案为:(,).【考点】本题考查了旋转变换,涉及含30度角的直角三角形,确定旋转几次一循环是解题的关键.7、;【解析】【分析】连接AO、BO、CO,过O作FO⊥AO,交AB的延长线于F,判定△AOC≌△FOB(ASA),即可得出AO=FO,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.【详解】解:连接AO、BO、CO,过O作FO⊥AO,交AB的延长线于F,∵O是正方形DBCE的对称中心,∴BO=CO,∠BOC=90°,∵FO⊥AO,∴∠AOF=90°,∴∠BOC=∠AOF,即∠AOC+∠BOA=∠FBO+∠BOA,∴∠AOC=∠FBO,∵∠BAC=90°,∴在四边形ABOC中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO,在△AOC和△FOB中,,∴△AOC≌△FOB(ASA),∴AO=FO,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×=.故答案为.【考点】本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.8、【解析】【分析】由题意分析可知,点F为主动点,运动轨迹是线段AB,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,也是一条线段,之后通过垂线段最短构造直角三角形获得CG最小值.【详解】解:由题意可知,点F是主动点,点G是从动点,点F在线段AB上运动,点G的轨迹也是一条线段,将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EGH,从而可知△EBH为等边三角形,∵四边形ABCD是正方形,∴∠FBE=90°,∴∠GHE=∠FBE=90°,∴点G在垂直于HE的直线HN上,延长HG交DC于点N,过点C作CM⊥HN于M,则CM即为CG的最小值,过点E作EP⊥CM于P,可知四边形HEPM为矩形,∠PEC=30°,∠EPC=90°,则CM=MP+CP=HE+EC=2+=,故答案为:.【考点】本题考查了线段最值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是最值问题中比较典型的类型.9、①②##②①【解析】【详解】解:根据图形1可得剪成若干小块,再图2中进行拼接平移后能够得到①、②,不能拼成③,故答案为:①②.10、.【解析】【分析】过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(2,0),B(0,1),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.【详解】解:∵∴过点作轴于点,∴∠BOA=∠ADC=90°.∵∠BAC=90°,∴∠BAO+∠CAD=90°.∵∠ABO+∠BAO=90°,∴∠CAD=∠ABO.∵AB=AC,

∴.∴∴设直线的解析式为,将点,点坐标代入得∴∴直线的解析式为.故答案为.【考点】本题是几何图形旋转与待定系数法求一次函数解析式的综合题,难度中等.三、解答题1、(1)画图见解析,(2)画图见解析【解析】【分析】(1)分别确定向右平移4个单位后的对应点,再连接即可;(2)分别确定绕原点O旋转180°后的对应点,再连接即可.【详解】解:(1)如图,线段即为所求作的线段,(2)如图,线段即为所求作的线段,【考点】本题考查的是平移的作图,中心对称的作图,掌握平移的性质与中心对称的性质是解题的关键.2、(1)(2)(3)存在,【解析】【分析】()利用待定系数法将两个已知点坐标代入抛物线方程之后解二元一次方程组即可求出解析式,再利用顶点坐标公式求出抛物线的顶点坐标;()先将点关于点的对称点的坐标求出来,由与关于点对称可得的开口向下,所以的,再设顶点坐标公式后求出对称后的抛物线的解析式;()分类讨论当为四边形的对角线时和当为平行四边形的边时的情况.(1)把和代入有得:L1的函数表达式为,顶点D的坐标为.(2)与关于点对称,的顶点的坐标为,点坐标为,L2的函数表达式为;(3)存在,理由如下:如下图所示,当为四边形的对角线时,点与点关于点对称,点为平行四边形的对称中心,当与重合时,点为关于的对称点,此时点坐标为.②当为平行四边形的边时,过点作轴于点,过点作轴的平行线,过点作轴的平行线,两线交于一点,四边形是平行四边形,,此时容易证明和全等,得出,即点的纵坐标为,把代入得,解得:,,此时点的坐标,,综上所述点共有三个,坐标分别是.【考点】本题主要考查二次函数解析式求解、利用尺规作关于中心对称的图形,平行四边形的相关性质,明确对称中心的位置,分别找出原图中各个关键点的坐标是解决本题的关键.3、(1)见解析(2)(―1,―2)【解析】【分析】(1)根据旋转的性质即可画出旋转后对应的;根据平移的性质,点A对应的点A2的坐标为(―4,―5),即可画出;(2)结合(1)和旋转的性质即可得旋转中心的坐标.(1)解:如图,和即为所求;(2)解:结合(1)中的图和旋转的性质,可得,旋转中心的坐标为:(―1,―2).【考点】本题考查了作图-旋转变换,坐标与图形变化-平移,解决本题的关键是掌握旋转的性质.4、(1)详见解析;(2)AE=5.【解析】【分析】(1)由“ASA”可证△COF≌△AOE,可得EO=FO,且GO=HO,可证四边形EHFG是平行四边形;(2)由题意可得EF垂直平分AC,可得AE=CE,由勾股定理可求AE的长.【详解】证明:(1)∵对角线AC的中点为O∴AO=CO,且AG=CH∴GO=HO∵四边形ABCD是矩形∴AD=BC,CD=AB,CD∥AB∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA∴△COF≌△AOE(ASA)∴FO=EO,且GO=HO∴四边形EHFG是平行四边形;(2)如图,连接CE∵∠α=90°,∴EF⊥AC,且AO=CO∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9﹣AE)2+9,∴AE=5【考点】此题主要考查特殊平行四边形的证明与性质,解题的关键是熟知矩形的性质及勾股定理的运用.5、(1)点在直线上,见解析;(2)18【解析】【分析】(1)根据,,得到,可得线段逆时针旋转落在直线上,即可得解;(2)作于,得出,再根据平行线的性质得到,再根据直角三角形的性质计算即可;【详解】解:(1)结论:点在直线上;∵,,∴,∴,即.∴线段逆时针旋转落在直线上,即点在直线上.(2)作于,∵,,∴,∵,∴,∵,,∴,,∴,即以、为邻边的正方形面积.【考点】本题主要考查了旋转综合题,结合平行线的性质计算是解题的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论