版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版9年级数学上册《概率初步》同步练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、某随机事件发生的概率的值不可能是(
)A. B. C. D.2、一个布袋中放着6个黑球和18个红球,除了颜色以外没有任何其他区别.则从布袋中任取1个球,取出黑球的概率是(
)A. B. C. D.3、七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A. B. C. D.4、投掷硬币m次,正面向上n次,其频率p=,则下列说法正确的是()A.p一定等于B.p一定不等于C.多投一次,p更接近D.投掷次数逐步增加,p稳定在附近5、如图,两个转盘分别自由转动一次(当指针恰好指在分界线上时重转),当停止转动时,两个转盘的指针都指向3的概率为(
)A. B. C. D.6、班长邀请,,,四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则,两位同学座位相邻的概率是(
)A. B. C. D.7、我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以闹息“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆形滚木的截面图(
)有如下四个结论:①勒洛三角形是中心对称图形;②使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动;③图2中,等边三角形的边长为,则勒洛三角形的周长为;④图3中,在中随机以一点,则该点取自勒洛三角形部分的概率为,上述结论中,所有正确结论的序号是(
)A.①② B.②④ C.②③ D.③④8、如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是(
)A.1 B.
C.
D.9、在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.朝上的点数是5的概率B.朝上的点数是奇数的概率C.朝上的点数大于2的概率D.朝上的点数是3的倍数的概率10、下列事件中,是必然事件的是(
)A.抛掷一个骰子,出现8点朝上 B.三角形的内角和是C.汽车经过一个有红绿灯的路口时,前方恰好是绿灯 D.明天考试,小明会考满分第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同,若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是____.2、一个不透明的口袋中有三个完全相同的小球,小球上分别写有数字4、5、6,随机摸取1个小球然后放回,再随机摸取一个小球(1)用画树状图或列表的方法表示出可能出现的所有结果;(1)求两次抽出数字之和为奇数的概率.3、袋中有五颗球,除颜色外全部相同,其中红色球三颗,标号分别为1,2,3,绿色球两颗,标号分别为1,2,若从五颗球中任取两颗,则两颗球的标号之和不小于4的概率为__.4、在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为_____.5、某同学投掷一枚硬币,如果连续次都是正面朝上,则他第次抛掷硬币的结果是正面朝上的概率是________.6、小明在2022北京冬奥会知识竞赛中,获得一次游戏抽奖机会,规则为:随机掷两枚骰子,骰子朝上的数字和是几,就将棋子前进几格,并获得相应格子中的奖品.现在棋子在“起点”处,小明随机掷两枚骰子一次,他获得吉祥物“冰墩墩”或“雪容融”的概率是________________.7、一只小狗在如图所示的地板上走来走去,地板是由大小相等的小正方形铺成的.最终停在黑色方砖上的概率是_______.8、公司以3元/的成本价购进柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,右面是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为_______(精确到0.1);从而可大约确定每千克柑橘的实际售价为_______元时(精确到0.1),可获得12000元利润.柑橘总质量损坏柑橘质量柑橘损坏的频率(精确到0.001)………25024.750.09930030.930.10335035.120.10045044.540.09950050.620.1019、如图,在3×3的正方形网格中,已有两个小正方形被涂黑,在从图中剩余的7个小正方形中任选一个涂黑,则图案是轴对称图形的概率是_____.10、从1~5这五个整数中随机抽取两个连续整数,恰好抽中数字4的概率是________.三、解答题(5小题,每小题6分,共计30分)1、新高考“3+1+2”是指:3,语数外三科是必考科目;1,物理、历史两科中任选一科;2,化学、生物、地理、政治四科中任选两科.某同学确定选择“物理”,但他不确定其它两科选什么,于是他做了一个游戏:他拿来四张不透明的卡片,正面分别写着“化学、生物、地理、政治”,再将这四张卡片背面朝上并打乱顺序,然后从这四张卡片中随机抽取两张,请你用画树状图(或列表)的方法,求该同学抽出的两张卡片是“化学、政治”的概率.2、北京将于2022年举办冬奥会和冬残奥会,中国将成为一个举办过五次各类奥林匹克运动会的国家.小亮是个集邮爱好者,他收集了如图所示的三张纪念邮票(除正面内容不同外,其余均相同),现将三张邮票背面朝上,洗匀放好.(1)小亮从中随机抽取一张邮票是“冬奥会会徽”的概率是______;(2)小亮从中随机抽取一张邮票(不放回),再从余下的邮票中随机抽取一张,请你用列表或画树状图的方法求抽到的两张邮票恰好是“冬奥会会徽”和“冬奥会吉祥物冰墩墩”的概率.(这三张邮票依次分别用字母A,B,C表示)3、2022北京冬残奥会是历史上第13届冬残奥会,于2022年3月4日至3月13日举行.比赛共设6个大项,即残奥高山滑雪、残奥冬季两项、残奥越野滑雪、残奥单板滑雪、残奥冰球、轮椅冰壶.小明为了解同学们是否知晓这6大项目,随机对学校的部分同学进行了一次问卷调查,问卷调查的结果分为“非常了解”“比较了解”“基本了解”“不太了解”四个类别,根据调查结果,绘制出如图所示的条形统计图和扇形统计图.请根据图表中的信息回答下列问题:(1)求本次调查的样本容量.(2)求图中a的值.(3)求图“基本了解”类别所对应的圆心角大小.(4)若某同学对项目了解类别为“非常了解”或者“比较了解”的话,则可称为“奥知达人”,现从该校随机抽查1名学生,求该学生是“奥知达人”的概率.4、为増强学生的实践劳动能力,某校本周为全校1000名学生提供了A、B、C、D四种类型特色活动,为了解学生对这四种特色活动的喜好情况,学校随机抽取部分学生进行了“你最喜欢哪一种特色活动(必选且只选一种)”的问卷调查:并根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)被抽取的学生共有人,在抽取的学生中最喜欢C类活动的人数为;扇形统计图中“D”类对应扇形的圆心角的大小为,估计全体1000名学生中最喜欢B活动的有人;(2)根据題意补全条形统计图;(3)现从甲、乙、丙、丁四名学生会成员中任选两人担任此次特色活动的“监督员”,请用树状图或列表法表示出所有可能的結果,求乙被选为“监督员”的概率.5、某校为了解学生对“A:古诗词,B:国画,C:闽剧,D:书法”等中国传统文化项目的最喜爱情况,在全校范围内随机抽取部分学生进行问卷调查(每人限选一项),并将调查结果绘制成如下不完整的统计图,根据图中的信息解答下列问题:(1)在这次调查中,一共调查了______名学生;扇形统计图中,项目D对应扇形的圆心角为______度;(2)请把折线统计图补充完整;(3)如果该校共有2000名学生,请估计该校最喜爱项目A的学生有多少人?(4)若该校在A,B,C,D四项中任选两项成立课外兴趣小组,请用画树状图或列表的方法求恰好选中项目A和D的概率.-参考答案-一、单选题1、D【解析】【分析】概率取值范围:,随机事件的取值范围是.【详解】解:概率取值范围:.而必然发生的事件的概率(A),不可能发生事件的概率(A),随机事件的取值范围是.观察选项,只有选项符合题意.故选:D.【考点】本题主要考查了概率的意义和概率公式,解题的关键是:事件发生的可能性越大,概率越接近于1,事件发生的可能性越小,概率越接近于0.2、A【解析】【分析】由于每个球被取出的机会是均等的,故用概率公式计算即可.【详解】解:根据题意,一个布袋中放着6个黑球和18个红球,根据概率计算公式,从布袋中任取1个球,取出黑球的概率是.故选:A.【考点】本题主要考查了概率公式的知识,解题关键是熟记概率公式.3、C【解析】【分析】首先设正方形的面积,再表示出阴影部分面积,然后可得概率.【详解】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:,故选C.【考点】此题主要考查了概率,关键是表示图形的面积和阴影部分面积.4、D【解析】【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【详解】投掷硬币m次,正面向上n次,投掷次数逐步增加,p稳定在附近.故选:D.【考点】考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生.5、A【解析】【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向3的情况数,继而求得答案.【详解】解:列表如下:12341234共有16种等可能的结果,两个转盘的指针都指向3的只有1种结果,两个转盘的指针都指向3的概率为,故选:A.【考点】此题考查了树状图法与列表法求概率.用到的知识点为:概率所求情况数与总情况数之比.6、C【解析】【分析】采用树状图发,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则,两位同学座位相邻的概率是.故选C.【考点】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.7、C【解析】【分析】根据轴对称的性质,圆的性质,等边三角形的性质,概率的概念分别判断即可.【详解】解:①勒洛三角形是轴对称图形,不是中心对称图形,故①错误;②夹在平行线之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故②正确;③设等边三角形DEF的边长为2,∴勒洛三角形的周长=,圆的周长=,故③正确;④设等边三角形DEF的边长为,∴阴影部分的面积为:;△ABC的面积为:,∴概率为:,故④错误;∴正确的选项有②③;故选:C.【考点】本题考查了平行线的距离,等边三角形的性质,轴对称的性质,概率的定义,正确的理解题意是解题的关键.8、D【解析】【分析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,即可得出答案.【详解】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=.故选D.【考点】本题考查概率公式和等腰三角形的判定,解题关键是熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商.9、D【解析】【分析】计算出各个选项中事件的概率,根据概率即可作出判断.【详解】A、朝上的点数是5的概率为,不符合试验的结果;B、朝上的点数是奇数的概率为,不符合试验的结果;C、朝上的点数大于2的概率,不符合试验的结果;D、朝上的点数是3的倍数的概率是,基本符合试验的结果.故选:D.【考点】本题考查了频率估计概率,当试验的次数较多时,频率稳定在某一固定值附近,这个固定值即为概率.10、B【解析】【分析】根据随机事件的相关概念可进行排除选项.【详解】解:A、抛掷一个骰子,出现8点朝上,属于不可能事件,故不符合题意;B、三角形内角和是180°,是必然事件,故符合题意;C、汽车经过一个有红绿灯的路口时,前方恰好是绿灯,属于随机事件,故不符合题意;D、明天考试,小明会考满分,是随机事件,故不符合题意;故选B.【考点】本题主要考查随机事件,熟练掌握随机事件的相关概念是解题的关键.二、填空题1、【解析】【分析】先用列表法求出所有情况,再根据概率公式求出概率.【详解】情况如表:12311,11,21,322,12,22,3共有6种情况,两张卡片标号恰好相同有2种情况,所以,两张卡片标号恰好相同的概率是P=.故答案为【考点】本题考核知识点:求概率.解题关键点:列表求出所有情况.2、【解析】【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;使用树状图分析时,一定要做到不重不漏.(2)根据概率的求法,找准两点:第一点,全部情况的总数;第二点,符合条件的情况数目;二者的比值就是其发生的概率.【详解】(1)根据题意,画树状图如下:数字之和为
8,9,10,9,10,11,10,11,12由树状图可知,共有9种可能的结果.(2)共有9种可能的结果,其中两次抽出数字之和为奇数(记为事件A)的情况有4种,P(A)=故答案为:【考点】此题考查用列表法或树状图法求概率,概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果那么事件A的概率P(A)=3、##0.5【解析】【分析】画树状图,共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,再由概率公式求解即可.【详解】画树状图如图:共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,两颗球的标号之和不小于4的概率为,故答案为:.【考点】本题考查了列表法与树状图法以及概率公式,正确画出树状图是解题的关键.4、30.【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在20%左右得到比例关系,列出方程求解即可.【详解】由题意可得,×100%=20%,解得,a=30.故答案为30.【考点】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.5、【解析】【分析】投掷一枚硬币,可能出现的两种情况:正面朝上或者正面朝下.每次出现的机会相同.【详解】第5次掷硬币,出现正面朝上的机会和朝下的机会相同,都为.故答案为:.【考点】本题考查了概率公式,掌握概率等于所求情况数与总情况数之比是解题的关键.6、【解析】【分析】通过列表法求出所有的结果数与满足条件的结果数,再利用概率公式求解即可.【详解】解:随机掷两枚骰子的结果如下表所示:1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)随机掷两枚骰子得到的数字之和的结果如下表所示:123456123456723456783456789456789105678910116789101112由游戏规则可知,前进4步,可以得到“冰墩墩”;前进6步可以得到“雪容融”;由表格可知一共有36种结果,其中满足条件的结果数为8;所以他获得吉祥物“冰墩墩”或“雪容融”的概率是;故答案为:.【考点】本题考查了用列表法或树状图法求概率,解题的关键是能正确列出所有的结果,并求出符合条件的结果数,同时牢记概率公式.7、【解析】【分析】先观察次地板一共有多少块小正方形铺成,再把是黑色的小正方块数出来,用黑色的小整块数目比总的小正方块即可得到答案.【详解】解:由图可知,该地板一共有3×5=15块小正方块,黑色的小正方块有5块,因此,停在黑色方砖上的概率是,故答案是.【考点】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;能正确数出黑色的小正方块是做对题目的关键,还需要注意,每个小正方块的大小是否一样,才能避免错误.8、
0.9
【解析】【分析】利用频率估计概率得到随实验次数的增多,柑橘损坏的频率越来越稳定在0.1左右,由此可估计柑橘完好率大约是0.9;设每千克柑橘的销售价为x元,然后根据“售价-进价=利润”列方程解答.【详解】解:从表格可以看出,柑橘损坏的频率在常数0.1左右摆动,并且随统计量的增加这种规律逐渐明显,所以柑橘的完好率应是1-0.1=0.9;设每千克柑橘的销售价为x元,则应有10000×0.9x-3×10000=12000,解得x=.所以去掉损坏的柑橘后,水果公司为了获得12000元利润,完好柑橘每千克的售价应为元,故答案为:0.9,.【考点】本题考查了用频率估计概率的知识,用到的知识点为:频率=所求情况数与总情况数之比.得到售价与利润的等量关系是解决问题的关键.9、【解析】【分析】将空白部分小正方形分别涂黑,任意一个涂黑共7种情况,其中涂黑1,3,5,6,7有5种情况可使所得图案是一个轴对称图形,利用概率公式求解即可.【详解】解:如图,将图中剩余的编号为1至7的小正方形中任意一个涂黑共7种情况,其中涂黑1,3,5,6,7有5种情况可使所得图案是一个轴对称图形,所以所得图案是轴对称图形的概率是.故答案为:.【考点】本题考查了概率公式求简单概率,设计轴对称图形,理解题意是解题的关键.10、【解析】【分析】先画出树状图确定所有等可能的情况数和找出恰好抽中数字4的情况数,然后运用概率公式求解即可.【详解】解:根据题意画树状图如下:则所有等可能的情况有4种,其中恰好抽中数字4的情况有2种所以恰好抽中数字4的概率是.故答案为.【考点】本题题考查了运用树状图法求概率,根据题意正确画出树状图是解答本题的关键.三、解答题1、【解析】【分析】用A、B、C、D分别表示化学、生物、地理、政治,然后画出树状图求解.【详解】解:用A、B、C、D分别表示化学、生物、地理、政治,画树状图如下,,由树状图可知,共有12种等可能发生的情况,其中符合条件的情况有2种,所以该同学抽出的两张卡片是“化学、政治”的概率=.【考点】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.2、(1)(2)抽到的恰好是“冬奥会会徽”和“冬奥会吉祥物冰墩墩”的概率为【解析】【分析】(1)确定所有等可能性为3,目标事件的可能性有1种,根据概率公式计算即可.(2)利用树状图或列表法计算即可.(1)∵事件所有等可能性为3种,抽取一张邮票是“冬奥会会徽”的可能性有1种,∴从中随机抽取一张邮票是“冬奥会会徽”的概率是,故答案为:.(2)这三张邮票依次分别用字母A,B,C表示,画树状图如下,共有6种等可能情况,其中抽到恰好是“冬奥会会徽”和“冬奥会吉祥物冰墩墩”的可能性有2种,抽到的恰好是“冬奥会会徽”和“冬奥会吉祥物冰墩墩”的概率为:.【考点】本题考查了概率的计算,正确分清是概率公式类计算还是列表或画树状图的方法计算是解题的关键.3、(1)400(2)120(3)72°(4)0.35【解析】【分析】(1)根据类别为“非常了解”的同学有20人,所占百分比为5%,用20除以5%即可求解,(2)根据类别为“比较了解”的频数为即可求得的值,(3)根据扇形统计图求得类别为“基本了解”所占百分比为乘以360度即可求解,(4)根据类别为“非常了解”与“比较了解”所占百分比之和为35%,利用频率估算概率即可.(1)解:∵类别为“非常了解”的同学有20人,所占百分比为5%,∴本次调查的样本容量为:.(2)∵类别为“比较了解”的同学占30%,∴类别为“比较了解”的频数为.∴.(3)结合扇形统计图,类别为“基本了解”所占百分比为,故对应圆心角的大小为.(4)类别为“非常了解”与“比较了解”所占百分比之和为35%,根据样本估计总体的原则,从该校随机抽查1名学生,该学生是“奥知达人”的概率为0.35.【考点】本题考查了条形统计图与扇形统计图信息关联,根据样本估计总体,频率估算概率,掌握以上知识是解题的关键.4、(1)100,30,36°,350(2)见解析(3)见解析,【解析】【分析】(1)用最喜欢A类活动的人数除以最喜欢A类活动的人数所占百分比即可得被抽取的学生的总人数;用总人数减去最喜欢A类、B类、D类活动的人数即可到最喜欢C类活动的人数;用最喜欢D类人数除以被抽
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年下半年北京市平谷区事业单位招聘工作人员笔试和易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年内蒙赤峰克什克腾旗招考(59人)易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年内蒙古鄂尔多斯康巴什区事业单位招聘工作人员42人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年内蒙古赤峰宁城县“绿色通道”引进教师40人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年内蒙古巴彦淖尔市国资委所属事业单位选调事业编制工作人员2人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年内蒙古呼和浩特市地铁2号线安检员招聘500人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年内蒙古呼伦贝尔市经济和信息化委员会招聘8人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年内蒙古乌海市市直事业单位人才引进16人(第二批)易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年六安市人民政府法制办公室招考易考易错模拟试题(共500题)试卷后附参考答案
- 尿路感染病人的护理题目及答案
- 现代家政服务与管理专业教学标准(中等职业教育)2025修订
- (2025.06.12)领导干部任前应知应会党内法规和法律知识考试题库(2025年度)
- 监事会换届工作报告
- 第10课 相亲相爱一家人 课件-2024-2025学年道德与法治一年级下册统编版
- 工业4.0与智能制造
- 2025民航招飞英语测试题及答案
- 石英石台面供货合同协议
- 雀巢财务管理制度
- 2025年陕西神渭煤炭管道运输有限责任公司招聘笔试参考题库含答案解析
- 急诊绿色通道管理制度
- 人教版七年级数学上册全册教案
评论
0/150
提交评论