




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版9年级数学上册【旋转】专项测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、如图,与关于成中心对称,不一定成立的结论是(
)A. B.C. D.2、如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正确的有()A.①②③④ B.②③ C.②③④ D.③④3、如图,将绕点A按顺时针旋转一定角度得到,点B的对应点D恰好落在BC边上,若,,则CD的长为(
).A. B. C. D.14、如图,已知正方形的边长为4,以点C为圆心,2为半径作圆,P是上的任意一点,将点P绕点D按逆时针方向旋转,得到点Q,连接,则的最大值是(
)A.6 B. C. D.5、如图,已知点O(0,0),P(1,2),将线段PO绕点P按顺时针方向以每秒90°的速度旋转,则第19秒时,点O的对应点坐标为()A.(0,0) B.(3,1) C.(﹣1,3) D.(2,4)6、如图,在钝角中,,将绕点顺时针旋转得到,点,的对应点分别为,,连接.则下列结论一定正确的是(
)A. B. C. D.平分7、以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是(
)A. B.C. D.8、如图,在菱形中,顶点,,,在坐标轴上,且,,分别以点,为圆心,以的长为半径作弧,两弧交于点,连接,.将菱形与构成的图形绕点逆时针旋转,每次旋转45°,则第2022次旋转结束时,点的坐标为(
)A. B. C. D.9、如图下面图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.10、如图,点A的坐标为,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为,则m的值为(
)A. B. C. D.第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、如图,将等边绕顶点A顺时针方向旋转,使边AB与AC重合得,的中点E的对应点为F,则的度数是_______.2、如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4cm2,∠AOB=120°,则图中阴影部分的面积为__________.3、如图,在中,,,,为内一点,则的最小值为__________.4、如图,菱形的边长为,,边在轴上,若将菱形绕点逆时针旋转75°,得到菱形,则点的对应点的坐标为______.5、如图,在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为_____.6、如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到的位置,使得,则等于_____.7、在△ABC中,,点在边上,.若,则的长为__________.8、如图,把△ABC绕着点A逆时针旋转90°得到△ADE,连接BE,CD,M是BE的中点,若AM=,则CD的长为_______.9、如图,已知:,,以AB为边作正方形ABCD,使P、D两点落在直线AB的两侧.当时,则PD的长为______.10、将点绕原点O顺时针旋转得到点,则点落在第____________象限.三、解答题(6小题,每小题5分,共计30分)1、如图,将矩形ABCD绕点A顺时针旋转α得到矩形AEFG,其中点B的对应点E恰好落在边CD上,连结BG交AE于点G,连结BE.(1)求证:BE平分∠AEC;(2)求证:BH=HG.2、规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形
B.正五边形
C.菱形
D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);
(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有(
)个;A.0
B.1
C.2
D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.3、如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,的三个顶点分别为,,.(1)画出关于原点对称的,并写出点的坐标;(2)画出绕点顺时针旋转后得到的,并写出点的坐标.4、如图,点是的边上的动点,,连接,并将线段绕点逆时针旋转得到线段.(1)如图1,作,垂足在线段上,当时,判断点是否在直线上,并说明理由;(2)如图2,若,,求以、为邻边的正方形的面积.5、如图,在平面直角坐标系中,抛物线M的表达式为y=﹣x2+2x,与x轴交于O、A两点,顶点为点B.(1)求证:△OAB为等腰直角三角形:(2)已知点P在y轴上,且OP=1,点C在第一象限,△ABC为等腰直角三角形,将抛物线M进行平移,使其对称轴经过点C,请问平移后的抛物线能否经过点P?如果能,求出平移方式;如果不能,说明理由.6、如图1,直线上有一点O,过点O在直线上方作射线.将一直角三角板的直角顶点放在点O处,一条直角边在射线上,另一边在直线上方.将直角三角板绕着点O按每秒的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,恰好平分,此时,与之间有何数量关系?并说明理由;(2)在旋转的过程中,若射线的位置保持不变,且.①当边与射线相交时(如图3),则的值为_______;②当边所在的直线与平行时,求t的值.-参考答案-一、单选题1、D【解析】【分析】根据中心对称的性质即可判断.【详解】解:对应点的连线被对称中心平分,A,B正确;成中心对称图形的两个图形是全等形,那么对应线段相等,C正确;和不是对应角,D错误.故选:D.【考点】本题考查成中心对称两个图形的性质:对应点的连线被对称中心平分;成中心对称图形的两个图形是全等形.2、C【解析】【分析】利用旋转性质可得△ABF≌△ACD,根据全等三角形的性质一一判断即可.【详解】解:∵△ADC绕A顺时针旋转90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正确,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正确无法判断BE=CD,故①错误,故选:C.【考点】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型.3、D【解析】【分析】根据直角三角形两锐角互余可得∠C=30°,根据含30°角的直角三角形的性质可求出BC的长,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC-BD计算即可得解.【详解】解:∵∠B=60°,∴∠C=90°-60°=30°,∵AB=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故选:D.【考点】本题考查了旋转的性质,含30°角的直角三角形的性质,等边三角形的判定与性质,熟记性质并判断出△ABD是等边三角形是解题的关键.4、A【解析】【分析】连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E.根据正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质求出AQ的长度,根据三角形三边关系确定当点Q与点E重合时,BQ取得最大值,最后根据线段的和差关系计算即可.【详解】解:如下图所示,连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E.∵正方形ABCD的边长为4,的半径为2,∴AD=CD=AB=4,∠ADC=90°,CP=2.∵点P绕点D按逆时针方向旋转90°得到点Q,∴∠QDP=90°,QD=PD.∴∠ADC=∠QDP.∴∠ADC-∠QDC=∠QDP-∠QDC,即∠ADQ=∠CDP.∴.∴AQ=CP=2.∴AE=AQ=2.∵P是上任意一点,∴点Q在上移动.∴.∴当点Q与点E重合时,BQ取得最大值为BE.∴BE=AE+AB=6.故选:A.【考点】本题考查正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质,三角形三边关系,线段的和差关系,综合应用这些知识点是解题关键.5、B【解析】【分析】依据线段PO绕点P按顺时针方向以每秒90°的速度旋转,即可得到19秒后点O旋转到点O'的位置,再根据全等三角形的对应边相等,即可得到点O的对应点O'的坐标.【详解】解:如图所示,∵线段PO绕点P按顺时针方向以每秒90°的速度旋转,每4秒一个循环,19=4×4+3,∴3×90°=270°,∴19秒后点O旋转到点O'的位置,∠OPO'=90°,如图所示,过P作MN⊥y轴于点M,过O'作O'N⊥MN于点N,则∠OMP=∠PNO'=90°,∠POM=∠O'PN,OP=PO',在△OPM和△PO'N中,,∴△OPM≌△PO'N(AAS),∴O'N=PM=1,PN=OM=2,∴MN=1+2=3,点O'离x轴的距离为2-1=1,∴点O'的坐标为(3,1),故选:B.【考点】本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.6、D【解析】【分析】根据旋转可知△CAB≌△EAD,∠CAE=70°,结合∠BAC=35°,可知∠BAE=35°,则可证得△CAB≌△EAB,即可作答.【详解】根据旋转的性质可知△CAB≌△EAD,∠CAE=70°,∴∠BAE=∠CAE-∠CAB=70°-35°=35°,AC=AE,AB=AD,BC=DE,∠ABC=∠ADE,故A、B错误,∴∠CAB=∠EAB,∵AC=AE,AB=AB,∴△CAB≌△EAB,∴△EAB≌△EAD∴∠BEA=∠DEA,∴AE平分∠BED,故D正确,∴AD+BE=AB+BE>AE=AC,故C错误,故选:D.【考点】本题考查了旋转的性质和全等三角形的判定与性质,求出∠BAE=35°是解答本题的关键.7、A【解析】【分析】根据中心对称图形和轴对称图形的概念逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.【详解】A.既是轴对称图形又是中心对称图形,故该选项符合题意;B.是轴对称图形,但不是中心对称图形,故该选项不符合题意;C.不是轴对称图形,但是中心对称图形,故该选项不符合题意;D.既不是轴对称图形也不是中心对称图形,故该选项不符合题意.故选A.【考点】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.8、D【解析】【分析】将菱形与构成的图形绕点逆时针旋转,每次旋转45°,即点E,绕点O,逆时针旋转,每次旋转45°,所以点E每8次一循环,又因为2022÷8=252…..6,所以E2022坐标与E6坐标相同,求出点E6的坐标即可求解.【详解】解:如图,将菱形与构成的图形绕点逆时针旋转,每次旋转45°,即点E,绕点O,逆时针旋转,每次旋转45°,由图可得点E每8次一循环,∵2022÷8=252…..6,∴E2022坐标与E6坐标相同,∵A(0,1),∴OA=1,∵菱形,,∴∠ABO=∠ADO=30°,∴AD=AB=2OA=2,∴OD=,∵△ADE是等边三角形,∴∠ADE=60°,DE=AD=2,∴∠ODE=90°,∴∠DOE+∠DEO=90°,过点E6作E6F⊥x轴于F,∴∠OFE6=∠ODE=90°,∵∠E6OE=90°,∴∠DOE+∠E6OF=90°,∴∠∠DEO=∠E6OF,∵OE=OE6,∴△ODE≌△E6FO(AAS),∴OF=DE=2,E6F=OD=,∴E6(2,-),∴E2022(2,-),故选:D.【考点】本题考查图形变换规律,菱形的性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,本题属旋转规律型,坐标变换规律型问题,找出图形变换规律,即得出点E变换规律是解题的关键.9、B【解析】【详解】解:A、是轴对称图形,但不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D、是轴对称图形,但不是中心对称图形,故本选项不符合题意;故选:B【考点】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.10、C【解析】【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得,可得,,从而,即可解得.【详解】解:过C作CD⊥x轴于D,CE⊥y轴于E,如图所示:∵CD⊥x轴,CE⊥y轴,∴∠CDO=∠CEO=∠DOE=90°,∴四边形EODC是矩形,∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC=BC,∵A(0,2),C(m,3),∴CE=m=OD,CD=3,OA=2,∴AE=OE−OA=CD−OA=1,∴,在Rt△BCD中,,在Rt△AOB中,,∵OB+BD=OD=m,∴,化简变形得:3m4−22m2−25=0,解得:或(舍去),∴,故C正确.故选:C.【考点】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.二、填空题1、【解析】【分析】根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.【详解】∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.【考点】此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.2、4cm2【解析】【分析】根据旋转的性质和图形的特点解答.【详解】每个叶片的面积为4cm2,因而图形的面积是12cm2.∵图案绕点O旋转120°后可以和自身重合,∠AOB为120°,∴图形中阴影部分的面积是图形的面积的,因而图中阴影部分的面积之和为4cm2.故答案为4cm2.【考点】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.注:旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.3、【解析】【分析】将△APB绕点A顺时针旋转60°,得到△,连接、,作CN⊥交的延长线于点N,则△≌△APB,由题意可证△是等边三角形,所以,所以当共线时,最小,求出即可;【详解】将△APB绕点A顺时针旋转60°,得到△,连接、,作CN⊥交的延长线于点N,则△≌△APB,∴∠BAP=∠,∴,,,∴△是等边三角形,∴,∴,∴当共线时,最小,∴∠CAN=180°-∠,CN⊥AN,∴∠ACN=30°,∴,,∴,∴,∴=;故答案为:.【考点】本题考查了全等三角形判定与性质,旋转的性质,以及等边三角形的性质和求线段最值的问题,掌握做辅助线是解题的关键.4、【解析】【分析】根据菱形的性质可得出∠AOC=60°,则三角形OAC为等边三角形,即AC=,根据菱形对角线的性质可得出∠AOE=30°,根据勾股定理可得OE,OB,再根据旋转的性质可得OB=OB1,∠B1OF=45°,根据勾股定理即可得出OF与B1F的长度,即可得出答案.【详解】解:如图,连接AC与OB相交于点E,过点B1作B1F⊥x轴,垂足为F,∵四边形OABC为菱形,,OA=OC,∴△AOC是等边三角形,OC=OA=AC=,∵AC⊥OB,在Rt△OAE中,OA=,AE=AC=,∴OE=AE=,∴OB=,∵∠COB=∠AOC=30°,∠BOB1=75°,∴∠B1OF=180°-60°-∠BOB1=180°-60°-75°=45°,在Rt△B1OF中,OB1=OB=,OF=B1F,∴OF2+B1F2=OB12,可得OF=B1F=,∵点B1在第二象限,∴点B1的坐标为.故答案为:.【考点】本题主要考查了菱形及旋转的性质,熟练应用相关性质进行计算是解决本题的关键.5、(2,1)【解析】【分析】观察图形,根据中心对称的性质即可解答.【详解】∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为(2,1).【考点】本题考查了中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.6、50°【解析】【分析】由平行线的性质可求得的度数,然后由旋转的性质得到,然后依据三角形的性质可知的度数,依据三角形的内角和定理可求得的度数,从而得到的度数.【详解】解:∵∴∵由旋转的性质可知:∴∴∴故答案为:.7、【解析】【分析】将CE绕点C顺时针旋转90°得到CG,连接GB,GF,可得△ACE≌△BCG,从而得FG2=AE2+BF2,再证明△ECF≌△GCF,从而得EF2=AE2+BF2,进而即可求解.【详解】解:将CE绕点C顺时针旋转90°得到CG,连接GB,GF,∵∠BCE+∠ECA=∠BCG+∠BCE=90°∴∠ACE=∠BCG.∵在△ACE与△BCG中,∵,∴△ACE≌△BCG(SAS),∴∠A=∠CBG=45°,AE=BG,∴∠FBG=∠FBC+∠CBG=90°.在Rt△FBG中,∠FBG=90°,∴FG2=BG2+BF2=AE2+BF2.又∵∠ECF=45°,∴∠FCG=∠ECG−∠ECF=45°=∠ECF.∵在△ECF与△GCF中,,∴△ECF≌△GCF(SAS).∴EF=GF,∴EF2=AE2+BF2,∵,∴BF=,故答案是:.【考点】本题主要考查全等三角形的判定和性质以及旋转变换,二次根式的化简,通过旋转变换,构造全等三角形,是解题的关键.8、【解析】【分析】延长AM到F,使AM=MF,连接BF,证△AEM≌△FBM,得AE=FB,∠AEM=∠FBM,△ABC绕着点A逆时针旋转90°得到△ADE,得AB=AD,∠CAE=∠BAD=90°,再证AC=BF,∠CAD=∠ABF,得△BFA≌△ACD,即可得答案.【详解】解:如上图:延长AM到F,使AM=MF,∵M是BE的中点,∴BM=EM,∵∠AME=∠FMB,∴△AEM≌△FBM,∴AE=FB,∠AEM=∠FBM,∵△ABC绕着点A逆时针旋转90°得到△ADE,∴AB=AD,AC=AE,∠CAE=∠BAD=90°,∴AC=BF,∠CAD=90°-∠EAD,∵∠ABF=∠ABM+∠FBM=∠ABM+∠AEM=180°-∠BAE=180°-(∠BAD+∠EAD)=180°-90°-∠EAD=90°-∠EAD,∴∠CAD=∠ABF,在△BFA和△ACD中,∴△BFA≌△ACD,∴FA=CD,∵AM=,∴CD=FA=2AM=2,故答案为:2.【考点】本题考查旋转的性质,三角形全等的判定与性质,解题的关键是延长AM到F,使AM=MF,证△BFA≌△ACD.9、【解析】【分析】由于AD=AB,∠DAB=90°,则把△APD绕点A顺时针旋转90°得到△AFB,AD与AB重合,PA旋转到AF的位置,根据旋转的性质得到AP=AF,∠PAF=90°,PD=FB,则△APF为等腰直角三角形,得到∠APF=45°,,即有∠BPF=∠APB+∠APF=45°+45°=90°,然后在Rt△FBP中,根据勾股定理可计算出FB的长,即可得到PD的长.【详解】解:∵AD=AB,∠DAB=90°,∴把△APD绕点A顺时针旋转90°得到△AFB,AD与AB重合,PA旋转到FA的位置,如图,∴AP=AF,∠PAF=90°,PD=FB,∴△APF为等腰直角三角形,∴∠APF=45°,,∴∠BPF=∠APB+∠APF=45°+45°=90°,在Rt△FBP中,PB=4,,∴由勾股定理得,∴,故答案为:【考点】本题考查了正方形的性质,旋转的性质,等腰直角三角形的判定和性质以及勾股定理.正确的作出辅助线是解题关键.10、四【解析】【分析】画出图形,利用图象解决问题即可.【详解】解:如图,所以在第四象限,故答案为:四.【考点】本题考查坐标与图形变化—旋转,解题的关键是正确画出图形,属于中考常考题型.三、解答题1、(1)见详解(2)见详解【解析】【分析】(1)根据矩形ABCD绕点A顺时针旋转α得到矩形AEFG,得出AB=AE,可得∠ABE=∠AEB,根据AB∥CD,得出∠CEB=∠ABE=∠AEB即可;(2)过B作BM⊥AE于M,先证△CEB≌△MEB(AAS),再证△BMH≌△GAH(AAS)即可.(1)证明:∵矩形ABCD绕点A顺时针旋转α得到矩形AEFG,∴AB=AE,∴∠ABE=∠AEB,∵矩形ABCD,∴AB∥CD,∴∠CEB=∠ABE=∠AEB,∴BE平分∠AEC;(2)证明:过B作BM⊥AE于M,∵四边形ABCD为矩形,∴∠C=90°BC=AD,∴∠BME=∠C=90°,在△CEB和△MEB中,,∴△CEB≌△MEB(AAS),∴BC=BM,∵矩形ABCD绕点A顺时针旋转α得到矩形AEFG,∴AD=AG,∠HAG=90°,∴BM=GA,在△BMH和△GAH中,,∴△BMH≌△GAH(AAS),∴BH=GH.【考点】本题考查矩形性质,矩形旋转性质,等腰三角形判定与性质,平行线性质,角平分线判定,三角形全等判定与性质,掌握矩形性质,矩形旋转性质,等腰三角形判定与性质,平行线性质,角平分线判定,三角形全等判定与性质是解题关键.2、(1)B;(2)(1)(3)(5);(3)C;(4)见解析【解析】【分析】(1)根据旋转对称图形的定义进行判断;(2)先分别求每一个图形中的旋转角,然后再进行判断;(3)根据旋转对称图形的定义进行判断;(4)利用旋转对称图形的定义进行设计.【详解】解:(1)矩形、正五边形、菱形、正六边形都是旋转对称图形,但正五边形不是中心对称图形,故选:B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为:(1)(3)(5).(3)①中心对称图形,旋转180°一定会和本身重合,是旋转对称图形;故命题①正确;②等腰三角形绕一个定点旋转一定的角度α(0°<α≤180°)后,不一定能与自身重合,只有等边三角形是旋转对称图形,故②不正确;③圆具有旋转不变性,绕圆心旋转任意角度一定能与自身重合,是旋转对称图形;故命题③正确;即命题中①③正确,故选:C.(4)图形如图所示:【考点】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3、(1)图见解析;;(2)图见解析;【解析】【分析】(1)画出关于原点对称的,写出的坐标即可;(2)画出绕点顺时针旋转后得到的,写出点的坐标即可.【详解】解:(1)如图即为所作,;(2)如图:即为所作,.【考点】本题考查了旋转作图,根据题意画出图形是解本题的关键.4、(1)点在直线上,见解析;(2)18【解析】【分析】(1)根据,,得到,可得线段逆时针旋转落在直线上,即可得解;(2)作于,得出,再根据平行线的性质得到,再根据直角三角形的性质计算即可;【详解】解:(1)结论:点在直线上;∵,,∴,∴,即.∴线段逆时针旋转落在直线上,即点在直线上.(2)作于,∵,,∴,∵,∴,∵,,∴,,∴,即以、为邻边的正方形面积.【考点】本题主要考查了旋转综合题,结合平行线的性质计算是解题的关键.5、(1)见详解(2)将抛物线M向右平移个单位,再向上平移个点,得过点C1和点P的抛物线;抛物线M向右平移个单位,再向上平移得出过点C2和点P的抛物线;抛物线M向右平移个单位。再向上平移个单位,得点过点C3与P的抛物线【解析】【分析】(1)将抛物线M配方为顶点式得出抛物线的对称轴为x=2,抛物线的顶点B(2,2),然后求出点A(4,0),根据对称轴求出点E(2,O),BE⊥OA,证明△OEB为等腰直角三角形,再证△AEB为等腰直角三角形即可;(2)根据△ABC为等腰直角三角形,分以下三种情况,以AB为直角边,点B为直角顶点,将AB绕点B逆时针旋转90°,得出点C1(4,4)将抛物线M向右平移2个单位,再向上平移2个点,得出以C1为顶点的抛物线为,以AB为直角边,以点A直角顶点,将AB绕点A顺时针旋转90°,得AC2,求出点C2(6,2),抛物线M向右平移4个单位得出过顶点C2的抛物线;以AB为斜边,点C3为直角顶点,点C3在AC1的中点,C3(4,2)即可.(1)解:抛物线M的表达式为,∴抛物线的对称轴为x=2,抛物线的顶点B(2,2),抛物线与x轴的交点,解得:,∴点A(4,0),∵抛物线对称轴为x=2,∴点E(2,O),BE⊥OA,∵OE=BE=2,∠OEB=90°,∴△OEB为等腰直角三角形,∴∠BOE=∠OBE=45°,∵AE=OA-OE=4-2=2,∴BE=AE,∠AEB=90°,∴△AEB为等腰直角三角形,∴∠EBA=∠EAB=45°,∴∠BOE=∠OBE=∠EBA=∠EAB=45°,∴OB=AB,∠OBA=∠OBE+∠ABE=45°+45°=90°,∴△OAB为等腰直角三角形(2)解:∵△ABC为等腰直角三角形,分以下三种情况,以AB为直角边,点B为直角顶点,将AB绕点B逆时针旋转90°,∴∠BAC1=45°,∴∠CAO=∠OAB+∠C1AB=4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第2课 开放互联-网络协议与标准说课稿-2025-2026学年初中信息科技湘教版2024七年级上册-湘教版2024
- 摩托车维修流程自动化分析报告
- 汽车热处理生产线操作工适应性考核试卷及答案
- 声环境噪声评估报告
- 中药油剂工三级安全教育(车间级)考核试卷及答案
- 隧道巡视养护工成本控制考核试卷及答案
- 丁二酸装置操作工上岗考核试卷及答案
- 在线学习服务师标准化作业考核试卷及答案
- 6.1分类加法计数原理与分步乘法计数原理 教学设计-2024-2025学年高二下学期数学人教A版2019选择性必修第三册
- 自然保护区环境巡护监测工异常处理考核试卷及答案
- CD13在肝癌中的表达、作用机制及临床意义研究
- 宗教场所组织管理制度
- 委托储存运输管理制度
- iqc进料检验员试题及答案
- 4-04-05-04 国家职业标准数据库运行管理员S (2025年版)
- 危重患者皮肤管理课件
- 2025年国防教育知识竞赛试题(附答案)
- 工伤受伤经过简述如何写
- 银行现金取款申请书
- 人事外包招聘代理合同
- 数字经济学-课件 第3章 数字技术
评论
0/150
提交评论