2025年人教版8年级数学下册《平行四边形》单元测试试题(解析版)_第1页
2025年人教版8年级数学下册《平行四边形》单元测试试题(解析版)_第2页
2025年人教版8年级数学下册《平行四边形》单元测试试题(解析版)_第3页
2025年人教版8年级数学下册《平行四边形》单元测试试题(解析版)_第4页
2025年人教版8年级数学下册《平行四边形》单元测试试题(解析版)_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》单元测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是()A.5 B.6 C.8 D.102、下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形 B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形 D.对角线相等且互相垂直的平行四边形3、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE4、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20º B.25º C.30º D.35º5、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)6、如图,把一张长方形纸片ABCD沿AF折叠,使B点落在处,若,要使,则的度数应为()A.20° B.55° C.45° D.60°7、如图,点E是长方形ABCD的边CD上一点,将ADE沿着AE对折,点D恰好折叠到边BC上的F点,若AD=10,AB=8,那么AE长为()A.5 B.12 C.5 D.138、平行四边形中,,则的度数是()A. B. C. D.9、如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则△ABE的面积为()A.6cm2 B.8cm2 C.10cm2 D.12cm210、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是()A.任意四边形 B.平行四边形 C.对角线相等的四边形 D.对角线垂直的四边形第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、如图,在△ABC中,D,E分别是边AB,AC的中点,∠B=50°.现将△ADE沿DE折叠点A落在三角形所在平面内的点为A1,则∠BDA1的度数为_____.2、如图,在矩形ABCD中,对角线AC,BD相交于O,EF过点O分别交AB,CD于E,F,已知AB=8cm,AD=5cm,那么图中阴影部分面积为_____cm2.3、如图,已知正方形ABCD的边长为6,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM若AE=2,则FM的长为___.4、如果一个矩形较短的边长为5cm,两条对角线的夹角为60°,则这个矩形的对角线长是_________cm.5、如图,在平行四边形ABCD中,∠B=45°,AD=8,E、H分别为边AB、CD上一点,将▱ABCD沿EH翻折,使得AD的对应线段FG经过点C,若FG⊥CD,CG=4,则EF的长度为_____.6、正方形ABCD的边长是8cm,点M在BC边上,且MC=2cm,P是正方形边上的一个动点,连接PB交AM于点N,当PB=AM时,PN的长是_____.7、如图,矩形ABCD中,AC、BD相交于点O且AC=12,如果∠AOD=60°,则DC=__.8、如图,四边形和四边形都是边长为4的正方形,点是正方形对角线的交点,正方形绕点旋转过程中分别交,于点,,则四边形的面积为______.9、在直角墙角FOE中有张硬纸片正方形ABCD靠墙边滑动,如图所示,AD=2,A点沿墙往下滑动到O点的过程中,正方形的中心点M到O的最小值是______.10、如图,已知在矩形中,,,将沿对角线AC翻折,点B落在点E处,连接,则的长为_________.三、解答题(5小题,每小题6分,共计30分)1、如图,四边形ABCD是一个菱形绿草地,其周长为40m,∠ABC=120°,在其内部有一个矩形花坛EFGH,其四个顶点恰好在菱形ABCD各边中点,现准备在花坛中种植茉莉花,其单价为30元/m2,则需投资资金多少元?(取1.732)2、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BE=BF.求证:∠DEF=∠DFE.

3、在平面直角坐标系xOy中,点A(x,﹣m)在第四象限,A,B两点关于x轴对称,x=+n(n为常数),点C在x轴正半轴上,(1)如图1,连接AB,直接写出AB的长为;(2)延长AC至D,使CD=AC,连接BD.①如图2,若OA=AC,求线段OC与线段BD的关系;②如图3,若OC=AC,连接OD.点P为线段OD上一点,且∠PBD=45°,求点P的横坐标.4、在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E按逆时针排列),点E的位置随点P的位置变化而变化.(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是,BC与CE的位置关系是;(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=2,BE=2,请直接写出APE的面积.5、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10.-参考答案-一、单选题1、A【解析】【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:,故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.2、D【解析】【分析】根据正方形的判定定理进行判断即可.【详解】解:A、对角线相等的平行四边形是矩形,不符合题意;B、对角线互相平分且垂直的四边形是菱形,不符合题意;对角线相等且互相垂直的平行四边形是正方形,故C选项不符合题意;D选项符合题意;故选:D.【点睛】本题考查了正方形的判定,熟知正方形的判定定理是解本题的关键.3、D【解析】【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【详解】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴结论正确的是D选项.故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.4、C【解析】【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵ADBC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.5、A【解析】【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D点和C点的纵坐标相等,再求出CD=AB=5,得到C点横坐标,最后得到C点的坐标.【详解】解:四边形ABCD为平行四边形。且。C点和D的纵坐标相等,都为3.A点坐标为(0,0),B点坐标为(5,0),.D点坐标为(2,3),C点横坐标为,点坐标为(7,3).故选:A.【点睛】本题主要是考察了平行四边形的性质、利用线段长求点坐标,其中,熟练应用平行四边形对边平行且相等的性质,是解决与平行四边形有关的坐标题的关键.6、B【解析】【分析】设直线AF与BD的交点为G,由题意易得,则有,由折叠的性质可知,由平行线的性质可得,然后可得,进而问题可求解.【详解】解:设直线AF与BD的交点为G,如图所示:∵四边形ABCD是矩形,∴,∵,∴,由折叠的性质可知,∵,∴,∴,∴;故选B.【点睛】本题主要考查折叠的性质及矩形的性质,熟练掌握折叠的性质及矩形的性质是解题的关键.7、C【解析】【分析】根据矩形的性质,折叠的性质,勾股定理即可得到结论.【详解】解:∵四边形ABCD是矩形,∴,,,∵将△ADE沿着AE对折,点D恰好折叠到边BC上的F点,∴,,∴,∴,∵,∴,∴,∴,∴,故选:C.【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.8、B【解析】【分析】根据平行四边形对角相等,即可求出的度数.【详解】解:如图所示,∵四边形是平行四边形,∴,∴,∴.故:B.【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.9、A【解析】【分析】根据折叠的条件可得:,在中,利用勾股定理就可以求解.【详解】将此长方形折叠,使点与点重合,,,根据勾股定理得:,解得:..故选:A.【点睛】本题考查了利用勾股定理解直角三角形,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.10、B【解析】【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状.【详解】解:,,,,∴a=b,c=d,∵四边形四条边长分别是a,b,c,d,其中a,b为对边,∴c、d是对边,∴该四边形是平行四边形,故选:B.【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.二、填空题1、80°【解析】【分析】由翻折的性质得∠ADE=∠A1DE,由中位线的性质得DE//BC,由平行线的性质得∠ADE=∠B=50°,即可解决问题.【详解】解:由题意得:∠ADE=∠A1DE;∵D、E分别是边AB、AC的中点,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°−100°=80°.故答案为:80°.【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点.熟练掌握各性质是解题的关键.2、10【解析】【分析】利用矩形性质,求证,将阴影部分的面积转为的面积,最后利用中线平分三角形的面积,求出的面积,即可得到阴影部分的面积.【详解】解:四边形为矩形,,,,,在与中,,阴影部分的面积最后转化为了的面积,中,,平分,阴影部分的面积:,故答案为:10.【点睛】本题主要是考查了矩形的性质以全等三角形的判定与性质以及中线平分三角形面积,熟练利用矩形性质,证明三角形全等,将阴影部分面积转化为其他图形的面积,这是解决本题的关键.3、5【解析】【分析】由旋转性质可证明△EDF≌△MDF,从而EF=FM;设FM=EF=x,则可得BF=8−x,由勾股定理建立方程即可求得x.【详解】由旋转的性质可得:DE=DM,CM=AE=2,∠ADE=∠CDM,∠EDM=90゜∵四边形ABCD是正方形∴∠ADC=∠B=90゜,AB=BC=6∴∠ADE+∠FDC=∠ADC−∠EDF=45゜∴∠FDC+∠CDM=45゜即∠MDF=45゜∴∠EDF=∠MDF在△EDF和△MDF中∴△EDF≌△MDF(SAS)∴EF=FM设EF=FM=x则∴∵在Rt△EBF中,由勾股定理得:解得:故答案为:5【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理等知识,运用了方程思想,关键是证明三角形全等.4、10【解析】【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形,是等边三角形,故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.5、【解析】【分析】延长CF与AB交于点M,由平行四边形的性质得BC长度,GM⊥AB,由折叠性质得GF,∠EFM,进而得FM,再根据△EFM是等腰直角三角形,便可求得结果.【详解】解:延长CF与AB交于点M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折叠知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案为:8-4.【点睛】本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形.6、5cm或5.2cm【解析】【分析】当点P在BC上,AM>BP,当点P在AB上,AM>BP,当点P在CD上,如图,根据PB=AM,可证Rt△ABM≌Rt△BCP(HL),可证BP⊥AM,根据勾股定理可求AM=,根据三角形面积可求,可求PN=BP-BN;当点P在AD上,如图,可证Rt△ABM≌Rt△BAP(HL),再证AN=PN=BN=MN,根据AM=BP=10cm,可求PN=cm,【详解】解:当点P在BC上,AM>BP,当点P在AB上,AM>BP,不合题意,舍去;当点P在CD上,如图,∵PB=AM∵四边形ABCD为正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵MC=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm,当点P在AD上,如图,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的长为5cm或5.2cm.故答案为5cm或5.2cm.【点睛】本题考查正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想,掌握正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想是解题关键.7、【解析】【分析】根据矩形的对角线互相平分且相等可得OA=OD,然后判断出△AOD是等边三角形,再根据勾股定理解答即可.【详解】解:∵四边形ABCD是矩形,∴OA=OD=AC=×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等边三角形,∴AD=OA=6,∴.故答案为:.【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出△AOD是等边三角形.8、4【解析】【分析】过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,把四边形的面积转化为正方形OGBH的面积,等于正方形ABCD面积的.【详解】如图,过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,∵四边形ABCD的对角线交点为O,∴OA=OC,∠ABC=90°,AB=BC,∴OG∥BC,OH∥AB,∴四边形OGBH是矩形,OG=OH=,∠GOH=90°,∴=4,∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,∴∠FOH=∠EOG,∵∠OGE=∠OHF=90°,OG=OH,∴△OGE≌△OHF,∴,∴,∴=4,故答案为:4.【点睛】本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键.9、2【解析】【分析】取的中点为,连接,根据直角三角形的性质求出OG和MG的长,然后根据两点之间线段最短即可求解.【详解】解:取的中点为,连接,为正方形,,,为中点,,又为直角三角形,,的轨迹是以为圆心的圆弧,最小值为当三点共线时,即,故答案为:2.【点睛】本题考查了正方形的性质,直角三角形斜边的中线等于斜边的一半,以及两点之间线段最短等知识,正确作出辅助线是解答本题的关键.10、【解析】【分析】过点E作EF⊥AD于点F,先证明CG=AG,再利用勾股定理列方程,求出AG的值,结合三角形的面积法和勾股定理,即可求解.【详解】解:如图所示:过点E作EF⊥AD于点F,有折叠的性质可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,设CG=x,则DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【点睛】本题主要考查矩形的性质,折叠的性质,勾股定理,等腰三角形的判定定理,添加辅助线构造直角三角形,是解题的关键.三、解答题1、2598元【分析】根据菱形的性质,先求出菱形的一条对角线,由勾股定理求出另一条对角线的长,由三角形的中位线定理,求出矩形的两条边,再求出矩形的面积,最后求得投资资金.【详解】连接BD,AD相交于点O,如图:∵四边形ABCD是一个菱形,∴AC⊥BD,∵∠ABC=120°,∴∠A=60°,∴△ABD为等边三角形,∵菱形的周长为40m,∴菱形的边长为10m,∴BD=10m,BO=5m,∴在Rt△AOB中,m,∴AC=2OA=m,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EH=BD=5m,EF=AC=5m,∴S矩形=5×5=50m2,则需投资资金50×30=1500×1.732≈2598元【点睛】本题考查了二次根式的应用,勾股定理,菱形的性质,等边三角形的判定与性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质与定理是解题的关键.2、见解析【分析】根据菱形的性质可得AB=BC=CD=AD,∠A=∠C,再由BE=BF,可推出AE=CF,即可利用SAS证明△ADE≌△CDF得到DE=DF,则∠DEF=∠DFE.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠A=∠C,∵BE=BF,∴AB-BE=BC-BF,即AE=CF,∴△ADE≌△CDF(SAS),∴DE=DF,∴∠DEF=∠DFE.【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质.3、(1)6;(2)①OC=BD,OC∥BD;②3.【分析】(1)利用二次根式的被开方数是非负数,求出m=3,判断出A,B两点坐标,可得结论;(2)①结论:OC=BD,OC∥BD.连接AB交x轴于点T.利用等腰三角形的三线合一的性质得出OC=2CT,利用三角形中位线定理得出CT∥BD,BD=2CT,由此即可得;②连接AB交OC于点T,过点P作PH⊥OC于H.证明△OTB≌△PHO(AAS),推出BT=OH=3,即可得出结论.【详解】解:(1)由题意,,∴m=3,∴x=n,∴A(n,﹣3),∵A,B关于x轴对称,∴B(n,3),∴AB=3﹣(﹣3)=6,故答案为:6;(2)①结论:OC=BD,OC∥BD.理由:如图,连接AB交x轴于点T.

∵A,B关于x轴对称,∴AB⊥OC,AT=TB,∵AO=AC,∴OT=CT(等腰三角形的三线合一),∴OC=2CT,∵AC=CD,AT=TB,∴CT∥BD,BD=2CT,∴OC=BD,OC∥BD;②如图,连接AB交OC于点T,过点作于点,,,∵AC=OC=CD,∴∠COA=∠OAC,∠COD=∠CDO,∴2∠OAC+2∠CDO=180°,∴∠OAC+∠CDO=90°,∴∠AOD=90°,∵A,B关于x轴对称,∴OT⊥AB,OA=OB,∴∠OBT=∠OAT,∵∠COD+∠AOC=90°,∠AOC+∠OAT=90°,∴∠OAT=∠COD,∴∠OBT=∠COD,即∠OBT=∠POH,∵BD∥OC,∴∠PDB=∠POH=∠OBT,∠ABD=90°,∵∠PBD=45°,∴∠ABP=45°,∵∠OBP=∠OBT+∠ABP=∠OBT+45°,∠OPB=∠PBD+∠PDB=45°+∠PDB,∴∠OBP=∠OPB,∴OB=PO,在和中,,∴△OTB≌△PHO(AAS),∴BT=OH=3,故点P的横坐标为3.【点睛】本题考查了坐标与轴对称变化、三角形中位线定理、等腰三角形的三线合一等知识点,较难的是题(2)②,通过作辅助线,构造全等三角形是解题关键.4、(1)BP=CE,CE⊥BC;(2)仍然成立,见解析;(3)31【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;(2)(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.【详解】解:(1)如图1,连接AC,延长CE交AD于点H,∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°;∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四边形ABCD是菱形,∴∠ABP=∠ABC=30°,∴∠ABP=∠ACE=30°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论