难点详解人教版8年级数学下册《平行四边形》必考点解析试卷(含答案解析)_第1页
难点详解人教版8年级数学下册《平行四边形》必考点解析试卷(含答案解析)_第2页
难点详解人教版8年级数学下册《平行四边形》必考点解析试卷(含答案解析)_第3页
难点详解人教版8年级数学下册《平行四边形》必考点解析试卷(含答案解析)_第4页
难点详解人教版8年级数学下册《平行四边形》必考点解析试卷(含答案解析)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》必考点解析考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有()A.①②③ B.②③④ C.①②④ D.①④2、如图,在四边形中,,,面积为21,的垂直平分线分别交于点,若点和点分别是线段和边上的动点,则的最小值为()A.5 B.6 C.7 D.83、如图,在中,,,AD平分,E是AD中点,若,则CE的长为()A. B. C. D.4、如图,阴影部分是将一个菱形剪去一个平行四边形后剩下的,要想知道阴影部分的周长,需要测量一些线段的长,这些线段可以是()A.AF B.AB C.AB与BC D.BC与CD5、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、在五边形纸片ABCDE中,AB=2,∠A=120°,将五边形纸片ABCDE沿BD折叠,点C落在点P处;在AE上取一点Q,将ABQ,EDQ分别沿BQ,DQ折叠,点A,E恰好落在点P处,如图1.(1)∠BPQ=______°;(2)∠BCD+∠QED=_______°;(3)如图2,当四边形BCDP是菱形,且Q,P,C三点共线时,BQ=_______.2、已知正方形ABCD的一条对角线长为2,则它的面积是______.3、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为__________.4、如图,在四边形ABCD中,AD//BC,∠B=90°,DE⊥BC于点E,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,沿边AD以1cm/s的速度向点D运动,与此同时,点Q从点C出发,沿边CB以3cm/s的速度向点B运动.当其中一个动点到达端点时,另一个动点也随之停止运动.连接PQ,过点P作PF⊥BC于点F,则当运动到第__________s时,△DEC≌△PFQ.5、已知Rt△ABC的周长是24,斜边上的中线长是5,则S△ABC=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB交CD于点E,交BC于点F,作EG∥AB交CB于点G.(1)求证:△CEF是等腰三角形;(2)求证:CF=BG;(3)若F是CG的中点,EF=1,求AB的长.2、在平面直角坐标系xOy中,点A(x,﹣m)在第四象限,A,B两点关于x轴对称,x=+n(n为常数),点C在x轴正半轴上,(1)如图1,连接AB,直接写出AB的长为;(2)延长AC至D,使CD=AC,连接BD.①如图2,若OA=AC,求线段OC与线段BD的关系;②如图3,若OC=AC,连接OD.点P为线段OD上一点,且∠PBD=45°,求点P的横坐标.3、已知,在中,,,点D为BC的中点.(1)观察猜想如图①,若点E、F分别是AB、AC的中点,则线段DE与DF的数量关系是______________;线段DE与DF的位置关系是______________.(2)类比探究如图②,若点E、F分别是AB、AC上的点,且,上述结论是否仍然成立,若成立,请证明:若不成立,请说明理由;(3)解决问题如图③,若点E、F分别为AB、CA延长线的点,且,请直接写出的面积.

4、已知:如图,在中,,,.求证:互相平分.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,且已知AB=8,BC=4(1)判断△ACF的形状,并说明理由;(2)求△ACF的面积;5、(1)如图1中,∠A=90°,请用直尺和圆规作一条直线,把ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹).(2)已知内角度数的两个三角形如图2、图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线,并标注底角的度数.(3)一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大的内角可能值为.-参考答案-一、单选题1、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.2、C【解析】【分析】连接AQ,过点D作,根据垂直平分线的性质得到,再根据计算即可;【详解】连接AQ,过点D作,∵,面积为21,∴,∴,∵MN垂直平分AB,∴,∴,∴当AQ的值最小时,的值最小,根据垂线段最短可知,当时,AQ的值最小,∵,∴,∴的值最小值为7;故选C.【点睛】本题主要考查了四边形综合,垂直平分线的性质,准确分析计算是解题的关键.3、B【解析】【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义∠DAB=∠B,求出AD,根据直角三角形的性质解答即可.【详解】解:∵∠ACB=90°,∠B=30°,∴∠BAC=90°-30°=60°,∵AD平分∠BAC,∴∠DAB=∠BAC=30°,∴∠DAB=∠B,∴AD=BD=a,在Rt△ACB中,E是AD中点,∴CE=AD=,故选:B.【点睛】本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.4、A【解析】【分析】如图,延长,交于点,证明,,再利用菱形的性质证明:阴影部分的周长,从而可得答案.【详解】解:如图,延长,交于点,四边形是平行四边形,,,四边形是菱形,,阴影部分的周长,故需要测量的长度,故选A.【点睛】本题考查的是平行四边形的性质,菱形的性质,证明阴影部分的周长是解本题的关键.5、A【解析】【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D点和C点的纵坐标相等,再求出CD=AB=5,得到C点横坐标,最后得到C点的坐标.【详解】解:四边形ABCD为平行四边形。且。C点和D的纵坐标相等,都为3.A点坐标为(0,0),B点坐标为(5,0),.D点坐标为(2,3),C点横坐标为,点坐标为(7,3).故选:A.【点睛】本题主要是考察了平行四边形的性质、利用线段长求点坐标,其中,熟练应用平行四边形对边平行且相等的性质,是解决与平行四边形有关的坐标题的关键.二、填空题1、120240【解析】【分析】(1)由折叠的性质可得∠A=∠BPQ=120°;(2)由周角的性质可得∠BPD+∠QPD+∠BPQ=360°,即可求解;(3)由菱形的性质可得BQ=QD,QH⊥BD,BH=DH,由“SSS”可证△ABQ≌△EDQ,可得∠AQB=∠BQP=∠EQD=∠PQD=45°,由直角三角形的性质可求解.【详解】解:(1)∵将五边形纸片ABCDE沿BD折叠,∴∠A=∠BPQ=120°,∠QED=∠QPD,∠BCD=∠BPD,故答案为:120;(2)∵∠BPD+∠QPD+∠BPQ=360°,∴∠BPD+∠QPD=240°,∴∠BCD+∠QED=240°,故答案为:240;(3)如图,连接PC,交BD于H,∵四边形BPDC是菱形,∴PC是BD的垂直平分线,BP=PD=BC=CD,∵Q,P,C三点共线,∴QC是BD的垂直平分线,∴BQ=QD,QH⊥BD,BH=DH,由折叠可知:∠A=∠BPQ=120°,AB=BP=2=DE=DP,∠AQB=∠BQP,∠EQD=∠PQD,AQ=QP=QE,∴∠BPH=60°,∴∠PBH=30°,∴PHBP=1,BHPH,在△ABQ和△EDQ中,,∴△ABQ≌△EDQ(SSS),∴∠AQB=∠EQD,∴∠AQB=∠BQP=∠EQD=∠PQD,∵∠AQE=180°,∴∠AQB=∠BQP=∠EQD=∠PQD=45°,∴∠QBH=∠BQP=45°,∴BH=QH,∴BQBH,故答案为:.【点睛】本题考查了翻折变换,菱形的性质,全等三角形的判定和性质,直角三角形的性质等知识,掌握折叠的性质是解题的关键.2、6【解析】【分析】正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.【详解】解:正方形ABCD的一条对角线长为2,故答案为:【点睛】本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.3、16【解析】【分析】由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长.【详解】∵四边形ABCD是菱形,且对角线相交于点O∴点O是AC的中点∵E为DC的中点∴OE为△CAD的中位线∴AD=2OE=2×2=4∴菱形的周长为:4×4=16故答案为:16【点睛】本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键.4、6或7【解析】【分析】分两种情况进行讨论,当在点的右侧时,在点的左侧时,根据△DEC≌△PFQ,可得,求解即可.【详解】解:由题意可得,四边形、为矩形,,、∴,∵△DEC≌△PFQ∴当在点的右侧时,∴,解得当在点的左侧时,∴,解得故答案为:或【点睛】此题考查了全等三角形的性质,矩形的判定与性质,解题的关键是根据题意,求得对应线段的长,分情况讨论列方程求解.5、24【解析】【分析】先根据直角三角形的性质求解,再利用周长求解,两边平方结合勾股定理可得,利用三角形面积公式求解即可.【详解】解:如图Rt△ABC,∠C=90°,点D为AB中点,为RtABC斜边上的中线,,,,,,,由,,∴S△ABC=.故答案为:24.【点睛】本题考查的是直角三角形斜边上的中线的性质,勾股定理的应用,完全平方公式,三角形面积公式,掌握以上知识是解题的关键.三、解答题1、(1)见解析;(2)见解析;(3)【分析】(1)由余角的性质可得∠3=∠7=∠4,可得CE=CF,可得△CEF为等腰三角形;

(2)过E作EM∥BC交AB于M,得出平行四边形EMBG,推出BG=EM,由“AAS”可证△CAE≌△MAE,推出CE=EM,由三角形的面积关系可求GB的长;

(3)证明△CEF是等边三角形,求出BC,可得结论.【详解】(1)证明:过E作EM∥BC交AB于M,∵EG∥AB,∴四边形EMBG是平行四边形,∴BG=EM,∠B=∠EMD,∵CD⊥AB,∴∠ADC=∠ACB=90°,∴∠1+∠7=90°,∠2+∠3=90°,∵AE平分∠CAB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠7,∴CE=CF,∴△CEF是等腰三角形;(2)证明:过E作EM∥BC交AB于M,则四边形EMBG是平行四边形,∴BG=EM,∵∠ADC=∠ACB=90°,∴∠CAD+∠B=90°,∠CAD+∠ACD=90°,∴∠ACD=∠B=∠EMD,∵在△CAE和△MAE中,∴△CAE≌△MAE(AAS),∴CE=EM,∵CE=CF,EM=BG,∴CF=BG.(3)∵CD⊥AB,EG∥AB,∴EG⊥CD,∴∠CEG=90°,∵CF=FG,∴EF=CF=FG,∵CE=CF,∴CE=CF=EF=1,∴△CEF是等边三角形,∴∠ECF=60°,∴BC=3,∠B=30°,∴∴Rt△ABC中∴解得.【点睛】本题考查了平行四边形的性质和判定,三角形的内角和定理,全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生综合运用定理进行推理的能力,有一定的难度.2、(1)6;(2)①OC=BD,OC∥BD;②3.【分析】(1)利用二次根式的被开方数是非负数,求出m=3,判断出A,B两点坐标,可得结论;(2)①结论:OC=BD,OC∥BD.连接AB交x轴于点T.利用等腰三角形的三线合一的性质得出OC=2CT,利用三角形中位线定理得出CT∥BD,BD=2CT,由此即可得;②连接AB交OC于点T,过点P作PH⊥OC于H.证明△OTB≌△PHO(AAS),推出BT=OH=3,即可得出结论.【详解】解:(1)由题意,,∴m=3,∴x=n,∴A(n,﹣3),∵A,B关于x轴对称,∴B(n,3),∴AB=3﹣(﹣3)=6,故答案为:6;(2)①结论:OC=BD,OC∥BD.理由:如图,连接AB交x轴于点T.

∵A,B关于x轴对称,∴AB⊥OC,AT=TB,∵AO=AC,∴OT=CT(等腰三角形的三线合一),∴OC=2CT,∵AC=CD,AT=TB,∴CT∥BD,BD=2CT,∴OC=BD,OC∥BD;②如图,连接AB交OC于点T,过点作于点,,,∵AC=OC=CD,∴∠COA=∠OAC,∠COD=∠CDO,∴2∠OAC+2∠CDO=180°,∴∠OAC+∠CDO=90°,∴∠AOD=90°,∵A,B关于x轴对称,∴OT⊥AB,OA=OB,∴∠OBT=∠OAT,∵∠COD+∠AOC=90°,∠AOC+∠OAT=90°,∴∠OAT=∠COD,∴∠OBT=∠COD,即∠OBT=∠POH,∵BD∥OC,∴∠PDB=∠POH=∠OBT,∠ABD=90°,∵∠PBD=45°,∴∠ABP=45°,∵∠OBP=∠OBT+∠ABP=∠OBT+45°,∠OPB=∠PBD+∠PDB=45°+∠PDB,∴∠OBP=∠OPB,∴OB=PO,在和中,,∴△OTB≌△PHO(AAS),∴BT=OH=3,故点P的横坐标为3.【点睛】本题考查了坐标与轴对称变化、三角形中位线定理、等腰三角形的三线合一等知识点,较难的是题(2)②,通过作辅助线,构造全等三角形是解题关键.3、(1),;(2)成立,证明见解析;(3)【分析】(1)由点E、F、D分别是AB、AC、BC的中点,可得,,,,再由,,得,,由此即可得到答案;(2)连接,只需要证明,得到,,即可得到结论;(3)连接AD,证明△BDE≌△ADF得到,则,由此求解即可.【详解】解:(1)∵点E、F、D分别是AB、AC、BC的中点,∴,,,,∵,,∴,,∴即,故答案为:,;(2)结论成立:,,证明:如图所示,连接,∵,,D为BC的中点,∴,且AD平分,,∴,在和中,,∴,∴,,∵,∴,即,即;(3)如图所示,连接AD,∵,,D为BC的中点,∴∴,且AD平分,,∴,∴∠FAD=180°-∠CAD=135°,∠EBD=180°-∠AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论