




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版9年级数学上册【二次函数】专题训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、在同一坐标系中,二次函数与一次函数的图像可能是(
)A. B.C. D.2、把抛物线的图象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是(
)A. B. C. D.3、当函数是二次函数时,的取值为(
)A. B. C. D.4、如图所示,将一根长m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是(
)A.正比例函数关系 B.一次函数关系 C.二次函数关系 D.反比例函数关系5、二次函数的图象如图所示,则下列结论中不正确的是()A. B.函数的最大值为C.当时, D.6、二次函数的图像如图所示,下列结论正确的是(
)A. B. C. D.有两个不相等的实数根7、若y=(m+1)是二次函数,则m=
(
)A.-1 B.7 C.-1或7 D.以上都不对8、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是(
)A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+20009、一次函数与二次函数在同一坐标系中的图象大致为()A. B.C. D.10、如图,抛物线的对称轴为直线,若关于的一元二次方程(为实数)在的范围内有解,则的取值错误的是(
)A. B. C. D.第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、若直线y=m(m为常数)与函数y=的图象有三个不同的交点,则常数m的取值范围________2、若二次函数图象的顶点在x轴上方,则实数m的取值范围是__________.3、抛物线与轴交于两点,分别是,,则的值为_______.4、已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是_____.(请用“>”连接排序)5、已知二次函数的图象与x轴的两个交点A,B关于直线x=﹣1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为________
.6、将抛物线向上平移2个单位后,得到的新抛物线与y轴交点的坐标为____.7、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF,已知,.(1)以点E,O,F,D为顶点的图形的面积为_________;(2)线段EF的最小值是_________.8、在平面直角坐标系中,二次函数过点(4,3),若当0≤x≤a时,y有最大值7,最小值3,则a的取值范围是_____.9、将抛物线向上平移()个单位长度,<k<,平移后的抛物线与双曲线y=(x>0)交于点P(p,q),M(1+,n),则下列结论正确的是__________.(写出所有正确结论的序号)①0<p<1-;
②1-<p<1;
③q<n;
④q>2k-k.10、已知抛物线与x轴的一个交点为,则代数式的值为______.三、解答题(5小题,每小题6分,共计30分)1、某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?2、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点.(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、.直线与直线交于点,当时,求值.3、已知抛物线C:y=ax2﹣4(m﹣1)x+3m2﹣6m+2(1)当a=1,m=0时,求抛物线C与x轴的交点个数;(2)当m=0时,判断抛物线C的顶点能否落在第四象限,并说明理由;(3)当m≠0时,过点(m,m2﹣2m+2)的抛物线C中,将其中两条抛物线的顶点分别记为A,B,若点A,B的横坐标分别是t,t+2,且点A在第三象限.以线段AB为直径作圆,设该圆的面积为S,求S的取值范围.4、某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元台),m与x的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为______,x的取值范围为______;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数.5、2022年冬奥会在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件).(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?-参考答案-一、单选题1、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴.如此分析下来,二次函数与一次函数无矛盾者为正确答案.【详解】解:由方程组得ax2=−a,∵a≠0∴x2=−1,该方程无实数根,故二次函数与一次函数图象无交点,排除B.A:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;但是一次函数b为一次项系数,图象显示从左向右上升,b>0,两者矛盾,故A错;C:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;b为一次函数的一次项系数,图象显示从左向右下降,b<0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错.故选C.【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上.2、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:∵抛物线的顶点坐标为(2,1),∴向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)∴所得抛物线解析式是.故选:A.【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便.3、D【解析】【分析】根据二次函数的定义去列式求解计算即可.【详解】∵函数是二次函数,∴a-1≠0,=2,∴a≠1,,∴,故选D.【考点】本题考查了二次函数的定义,熟记二次函数的定义并灵活列式计算是解题的关键.4、C【解析】【分析】设矩形的一边长为xm,求出矩形面积即可判断.【详解】设矩形的一边长为xm,另一边长为(1-x)m,面积用y表示,,故选择:C.【考点】本题考查列函数关系式,并判断函数的类型,掌握列函数的方法和函数的特征是解题关键.5、D【解析】【分析】根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,利用抛物线的对称性可得到抛物线与x轴的另一个交点坐标为(-3,0),从而分别判断各选项.【详解】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=-1,∴,即b=2a,则b<0,∵抛物线与y轴交于正半轴,∴c>0,则abc>0,故A正确;当x=-1时,y取最大值为,故B正确;由于开口向下,对称轴为直线x=-1,则点(1,0)关于直线x=-1对称的点为(-3,0),即抛物线与x轴交于(1,0),(-3,0),∴当时,,故C正确;由图像可知:当x=-2时,y>0,即,故D错误;故选D.【考点】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).6、C【解析】【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;由对称轴为x==1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c<0,结合b=-2a可得3a+c<0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0,故A选项错误;∵对称轴x==1,∴b=-2a,即2a+b=0,故B选项错误;当x=-1时,y=a-b+c<0,又∵b=-2a,∴3a+c<0,故C选项正确;∵抛物线的顶点为(1,3),∴的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,故选C.【考点】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.7、B【解析】【分析】令x的指数为2,系数不为0,列出方程与不等式解答即可.【详解】由题意得:m2-6m-5=2;且m+1≠0;解得m=7或-1;m≠-1,∴m=7,故选:B.【考点】利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为0.8、D【解析】【分析】设二次函数的解析式为:y=ax2+bx+c,根据题意列方程组即可得到结论.【详解】解:设二次函数的解析式为:y=ax2+bx+c,∵当x=55,y=1800,当x=75,y=1800,当x=80时,y=1550,∴,解得a=−2,b=260,c=−6450,∴y与x的函数关系式是y=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000,故选:D.【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键.9、A【解析】【分析】由二次函数的解析式可知,二次函数图象经过原点,则只有选项A,D可能正确,B,C不符合舍去,然后对A,D选项,根据二次函数的图象确定a和b的符号,然后根据一次函数的性质看一次函数图象的位置是否正确,若正确,说明它们可在同一坐标系内存在.【详解】解:由二次函数的解析式可知,二次函数图象经过原点,则只有选项A,D符合,B,C不符合舍去,A、由二次函数y=ax2+bx的图象得a>0,再根据>0得到b<0,则一次函数y=ax+b经过第一、三、四象限,所以A选项正确;D、由二次函数y=ax2+bx的图象得a<0,再根据<0得到b<0,则一次函数y=ax+b经过第二、三、四象限,所以D选项错误.故选:A.【考点】本题考查了二次函数的图象:二次函数的图象为抛物线,可能利用列表、描点、连线画二次函数的图象.也考查了二次函数图象与系数的关系.10、A【解析】【分析】已知抛物线的对称轴,可求出m=4,进而求出抛物线的解析式;把关于x的一元二次方程有解的问题,转化为抛物线与直线y=t的交点问题,可求出t的取值范围;最后将所给的四个选项逐一与t的范围加以对照,即可得出正确答案.【详解】解:∵抛物线的对称轴为直线x=2,∴解得,m=4.∴抛物线的解析式为当x=2时,∴抛物线的顶点坐标为(2,4).当x=1时,当x=3时,∵关于x的一元二次方程是,∴.∵方程在的范围内有解,∴抛物线与直线y=t在范围内有公共点,如图所示.故选:A【考点】本题考查了二次函数的对称轴、顶点坐标、与一元二次方程的关系等知识点,熟知二次函数的对称轴、顶点坐标的计算方法是解题的基础,而熟知二次函数与一元二次方程的互相转化是解题的关键.二、填空题1、0<m<4【解析】【分析】首先作出分段函数y=的图象,根据函数的图象即可确定m的取值范围.【详解】解:分段函数y=的图象如图:故要使直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,常数m的取值范围为0<m<4.故答案为0<m<4.【考点】本题考查了二次函数的图象及反比例函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一.2、【解析】【分析】先求出顶点坐标,再令顶点的纵坐标大于0即可求解.【详解】解:二次函数的对称轴为,当时,∴顶点坐标为,∵顶点在x轴上方,∴,即,故答案为:.【考点】本题考查二次函数的顶点坐标,掌握求二次函数顶点坐标的方法是解题的关键.3、2【解析】【分析】根据根与系数的关系解答即可.【详解】解:∵抛物线y=ax2-2ax-3与x轴交于两点,分别是(m,0),(n,0),∴.故答案是:2.【考点】考查了抛物线与x轴的交点,解题时,利用了抛物线解析式与一元二次方程间的转化关系以及根与系数的关系求得答案.4、a1>a2>a3>a4【解析】【分析】直接利用二次函数的图象开口大小与a的关系进而得出答案.【详解】解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案是:a1>a2>a3>a4.【考点】考查了二次函数的图象,正确记忆开口大小与a的关系是解题关键.5、y=x2+x﹣【解析】【分析】利用抛物线与x轴的两个交点关于对称轴对称,求出A和B的坐标,再根据顶点坐标在y=2x的图象上,将x=1代入即可求出顶点坐标,设顶点式即可求出二次函数表达式.【详解】解:∵二次函数的图象与x轴的两个交点A,B关于直线x=﹣1对称,且AB=6,∴A(-4,0),B(2,0),顶点横坐标为-1,又∵顶点在函数y=2x的图象上,∴将x=1代入,得y=2,即顶点坐标为(-1,-2)设二次函数解析式为y=a(x+1)2-2,代入A(-4,0),得a=,即y=(x+1)2-2=x2+x﹣【考点】本题考查了二次函数解析式的求法,中等难度,根据对称轴找到顶点坐标和与x轴的交点坐标是解题关键.6、(0,3)【解析】【分析】根据二次函数的平移规律得出新抛物线的解析式,再令x=0即可得出答案;【详解】解:∵抛物线向上平移2个单位得到新抛物线的解析式为,∴当x=0,则y=3,∴得到的新抛物线图象与y轴的交点坐标为:(0,3).故答案为:(0,3).【考点】此题主要考查了主要考查了二次函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.7、
1
【解析】【分析】(1)连接AO,DO,证明,可得,求出即可求解;(2)设,则,由勾股定理可得,即可求EF的最小值.【详解】解:(1)连接AO,DO,∵,∴,∵四边形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案为:1;(2)设,则,,在中,,∴当时,EF有最小值,故答案为:.【考点】本题考查正方形的性质,全等三角形的判定与性质,二次函数的性质,熟练掌握二次函数求最值的方法是解题的关键.8、2≤a≤4.【解析】【分析】先求得抛物线的解析式,根据二次函数的性质以及二次函数图象上点的坐标特征即可得到a的取值范围.【详解】解:∵二次函数y=-x2+mx+3过点(4,3),∴3=-16+4m+3,∴m=4,∴y=-x2+4x+3,∵y=-x2+4x+3=-(x-2)2+7,∴抛物线开口向下,对称轴是x=2,顶点为(2,7),函数有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,∵当0≤x≤a时,y有最大值7,最小值3,∴2≤a≤4.故答案为:2≤a≤4.【考点】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.9、②④##④②【解析】【分析】先画出函数图像,判断出当时抛物线和反比例函数图象上的点的纵坐标的关系,确定抛物线右支与反比例函数图象的交点个数,再利用抛物线的对称性与反比例函数的图象与性质直接判断即可.【详解】解:∵抛物线,∴该抛物线对称轴为,顶点坐标为(1,),将该抛物线向上平移()个单位长度,则顶点坐标为(1,),当时,反比例函数图象上点的坐标为(1,),如图所示,抛物线平移后的顶点纵坐标即为m,反比例函数上横坐标为1的点的纵坐标即为s,∴m-s=,∵<k<,∴∴抛物线的右支与反比例函数图象只有一个交点,且该交点横坐标大于1;∵平移后的抛物线与双曲线y=(x>0)交于点P(p,q),M(1+,n),∴点M为抛物线右支与反比例函数图象的交点,∴点P为抛物线左支与反比例函数图象的交点,由于反比例函数的图像在第一象限内y随x的增大而减小,且抛物线关于直线对称∴1-<p<1;q>2k-k.∴②④正确;故答案为:②④.【考点】本题考查了抛物线与反比例函数的图像与性质,解题关键是弄清楚这两个交点分别位于抛物线的左支和右支上,再利用抛物线的轴对称性和反比例函数图像的增减性进行判断.10、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果.【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案为:2019.【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值.三、解答题1、(1)y=-2x+220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【解析】【分析】(1)根据题意中销售量y(个)与售价x(元)之间的关系即可得到结论;(2)根据题意列出方程(-2x+220)(x-40)=2400,解方程即可求解;(3)设每星期利润为w元,构建二次函数模型,利用二次函数性质即可解决问题.【详解】(1)由题意可得,y=100-2(x-60)=-2x+220;(2)由题意可得,(-2x+220)(x-40)=2400,解得,,,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w元,由题意可得w=(-2x+220)(x-40)=,当时,w有最大值,最大值为2450,∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【考点】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题.2、(1);(2)的值为,,.【解析】【分析】(1)由直线BC求出B、C的坐标,再代入二次函数的解析式,求出b、c的值,得出二次函数的解析式;(2)用含有m的代数式表示点E和点F的坐标,用相似三角形对应边成比例的性质列方程,求出m的值.【详解】(1)直线的解析式点,点和在抛物线上,解得:二次函数的解析式为:(2)二次函数与轴交于点、点轴交直线于点点轴,轴,轴交直线于点,点点的坐标为,点的坐标为①若点在原点右侧,如图1,则,即,解得:,;②若点在原点左侧,如图2,则即,解得:,(舍去);综上所述,的值为,,.【考点】本题考查二次函数与几何的综合问题,熟练掌握二次函数的性质是本题的解题关键,解题时结合一次函数的性质,利用相似三角形的性质列方程,灵活应用函数图像上点的坐标特征.3、(1)2个;(2)不能,见解析;(3)π<S<5π.【解析】【分析】(1)由题意可知当a=1,m=0时,抛物线的表达式为:y=x2+4x+2,△=8>0,故C与x轴的交点个数为2;(2)根据题意假设点C在第四象限,则﹣>0,且﹣+2<0,即可求解;(3)由题意可知抛物线的表达式为:y=2x2﹣4(m﹣1)x+(3m2﹣6m+2),则顶点坐标为:(m﹣1,m2﹣2m),当m﹣1=t时,m=t+1,则点A(t,t2﹣1);当m﹣1=t+1时,m=t+3,点B(t+2,t2+4t+3);点A在第三象限,即t<0且t2﹣1<0,AB2=22+(4t+4)2=16(t+1)2+4,即可求解.【详解】解:(1)当a=1,m=0时,抛物线的表达式为:y=x2+4x+2,△=42-4×1×2=8>0,故C与x轴的交点个数为2个;(2)当m=0时,判断抛物线C的顶点为:(﹣,﹣+2),假设点C在第四象限,则﹣>0,且﹣+2<0,解得:0>且>1,故a无解,故顶点不能落在第四象限;(3)将点(m,m2﹣2m+2)代入抛物线表达式并整理得:(a﹣2)m2=0,∵m≠0,故a=2;则抛物线的表达式为:y=2x2﹣4(m﹣1)x+(3m2﹣6m+2),则顶点坐标为:(m﹣1,m2﹣2m),当m﹣1=t时,m=t+1,则点A(t,t2﹣1);当m﹣1=t+2时,m=t+3,点B(t+2,t2+4t+3);而点A在第三象限,即t<0且t2﹣1<0,解得:﹣1<t<0;yB﹣yA=4t+4>0,故点B在点A的右上方,AB2=22+(4t+4)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园课题咨询方案
- 校企合作活动策划方案名称
- 关于跳舞的活动策划书方案
- 社区三拼三促活动方案策划
- 咨询室设施体验方案
- 三得利乌龙茶活动策划方案
- 模块化建筑可持续性-洞察及研究
- 挡墙借土方回填施工方案
- 咨询技术转让便捷方案
- 居家清明节活动方案策划
- 2025年国家电网有限公司特高压建设分公司招聘10人(第一批)笔试参考题库附带答案详解
- 6.2 人大代表为人民 第二课时 课件 2025-2026学年六年级道德与法治 上册 统编版
- 2025年甘肃省金川集团股份有限公司技能操作人员社会招聘400人考试参考试题及答案解析
- 2025年会议行业研究报告及未来发展趋势预测
- T/CIE 189-2023硫化物全固态锂电池
- 借游戏账号合同5篇
- 《医疗器械监督抽验介绍》
- 2025年中职政治专业资格证面试技巧与答案解析大全
- 炎德·英才大联考长郡中学2026届高三月考试卷(一)生物试卷(含答案)
- 3.4 活动:电路创新设计展示说课稿 2023-2024学年教科版物理九年级上册
- 2025-2026学年人教鄂教版(2024)小学科学三年级上册(全册)教学设计(附目录P137)
评论
0/150
提交评论