考点解析人教版9年级数学上册【旋转】同步训练练习题(含答案详解)_第1页
考点解析人教版9年级数学上册【旋转】同步训练练习题(含答案详解)_第2页
考点解析人教版9年级数学上册【旋转】同步训练练习题(含答案详解)_第3页
考点解析人教版9年级数学上册【旋转】同步训练练习题(含答案详解)_第4页
考点解析人教版9年级数学上册【旋转】同步训练练习题(含答案详解)_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版9年级数学上册【旋转】同步训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A的坐标为,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为,则m的值为(

)A. B. C. D.2、图,在中,,将绕顶点顺时针旋转到,当首次经过顶点时,旋转角(

)A.30° B.40° C.45° D.60°3、如图,将正方形绕点A顺时针旋转,得到正方形,的延长线交于点H,则的大小为(

)A. B. C. D.4、如图,在中,,,,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为()A.1.6 B.1.8 C.2 D.2.65、下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形 B.等边三角形 C.菱形 D.平行四边形6、如图,菱形对角线交点与坐标原点重合,点,则点的坐标为(

)A. B. C. D.7、在平面直角坐标系中,点关于原点对称的点的坐标是(

)A. B. C. D.8、以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限9、有下列说法:①平行四边形具有四边形的所有性质:②平行四边形是中心对称图形:③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是(

).A.①②④ B.①③④ C.①②③ D.①②③④10、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接.下列结论一定正确的是(

)A. B. C. D.第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12°,B灯每秒转动4°.B灯先转动12秒,A灯才开始转动.当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是.2、将点绕原点O顺时针旋转得到点,则点落在第____________象限.3、如图所示,五角星的顶点是一个正五边形的五个顶点,这个五角星绕中心至少旋转__________度能和自身重合.4、如图,把△ABC绕点C按顺时针方向旋转35°,得到,交AC于点D,若,则∠A=°5、如图,在直角坐标系中,△ABC的顶点坐标分别为A(1,2),B(-2,2),C(-1,0).将△ABC绕某点顺时针旋转90°得到△DEF,则旋转中心的坐标是_____________.

6、如图,点P是边长为1的正方形ABCD的对角线AC上的一个动点,点E是BC中点,连接PE,并将PE绕点P逆时针旋转120°得到PF,连接EF,则EF的最小值是_________.7、如图,将的斜边AB绕点A顺时针旋转得到AE,直角边AC绕点A逆时针旋转得到AF,连结EF.若,,且,则_____.8、将边长为的正方形绕点按顺时针方向旋转到的位置(如图),使得点落在对角线上,与相交于点,则=_________.(结果保留根号)9、点A(1,-5)关于原点的对称点为点B,则点B的坐标为______.10、如图,将绕点A逆时针旋转角得到,点B的对应点D恰好落在边上,若,则旋转角的度数是______.三、解答题(6小题,每小题5分,共计30分)1、如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,的三个顶点分别为,,.(1)画出关于原点对称的,并写出点的坐标;(2)画出绕点顺时针旋转后得到的,并写出点的坐标.2、在Rt△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到线段AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)如图②,在四边形ABCD中,∠ABC=∠ACB=45°,若BD=7,将边AD绕点A逆时针旋转90°得到线段AE.连接DE、CE,求线段CE的长.(3)AD与CE交于点N,BD与CE交于点M,在(2)的条件下,试探究BD与CE的位置关系,并加以证明3、如图,在△ABC中,AB=AC,P是△ABC内的一点,且∠APB>∠APC,求证:PB<PC(反证法)4、在Rt△ABC中,∠BAC=90°,AB=AC,动点D在直线BC上(不与点B,C重合),连接AD,把AD绕点A逆时针旋转90°得到AE,连接DE,F,G分别是DE,CD的中点,连接FG.【特例感知】(1)如图1,当点D是BC的中点时,FG与BD的数量关系是,FG与直线BC的位置关系是;【猜想论证】(2)当点D在线段BC上且不是BC的中点时,(1)中的结论是否仍然成立?①请在图2中补全图形;②若成立,请给出证明;若不成立,请说明理由.【拓展应用】(3)若AB=AC=,其他条件不变,连接BF、CF.当△ACF是等边三角形时,请直接写出△BDF的面积.5、如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.6、已知:如图①,在矩形ABCD中,,垂足是E,点F是点关于AB的对称点,连接AF、BF.(1)直接求出:__;__;(2)若将沿着射线BD方向平移,设平移的距离为(平移距离指点B沿BD方向所经过的线段长度),点F分别平移到线段AB、AD上时,求出相应的m的值.(3)如图②,将绕点B顺时针旋转一个角,记旋转中的为,在旋转过程中,设所在的直线与直线AD交于点P,与直线BD交于点是否存在这样的P、Q两点,使为等腰三角形?若存在,直接写出此时DQ的长;若不存在,请说明理由.-参考答案-一、单选题1、C【解析】【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得,可得,,从而,即可解得.【详解】解:过C作CD⊥x轴于D,CE⊥y轴于E,如图所示:∵CD⊥x轴,CE⊥y轴,∴∠CDO=∠CEO=∠DOE=90°,∴四边形EODC是矩形,∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC=BC,∵A(0,2),C(m,3),∴CE=m=OD,CD=3,OA=2,∴AE=OE−OA=CD−OA=1,∴,在Rt△BCD中,,在Rt△AOB中,,∵OB+BD=OD=m,∴,化简变形得:3m4−22m2−25=0,解得:或(舍去),∴,故C正确.故选:C.【考点】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.2、B【解析】【分析】根据平行四边形的性质及旋转的性质可知,然后可得,则有,进而问题可求解.【详解】解:∵四边形是平行四边形,,∴,由旋转的性质可得,∴,∴;故选B.【考点】本题主要考查平行四边形的性质与旋转的性质,熟练掌握平行四边形的性质与旋转的性质是解题的关键.3、B【解析】【分析】根据旋转的性质,求得∠BAE=38°,根据正方形的性质,求得∠DBA=45°,∠ABH=135°,利用四边形的内角和定理计算即可.【详解】根据旋转的性质,得∠BAE=38°,∵四边形ABCD是正方形,∴∠DBA=45°,∠ABH=135°,∵四边形AEFG是正方形,∴∠E=90°,∴∠DHE=360°-90°-38°-135°=97°,故选B.【考点】本题考查了旋转的性质,正方形的性质,四边形的内角和定理,熟练掌握正方形的性质,旋转的性质是解题的关键.4、A【解析】【分析】由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,,∵,,∴为等边三角形,∴,∴,故选A.【考点】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB5、C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选C.【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、B【解析】【分析】根据菱形的中心对称性,A、C坐标关于原点对称,利用横反纵也反的口诀求解即可.【详解】∵菱形是中心对称图形,且对称中心为原点,∴A、C坐标关于原点对称,∴C的坐标为,故选C.【考点】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键.7、C【解析】【分析】根据关于原点对称的点的坐标特点解答.【详解】解:点P(-3,-5)关于原点对称的点的坐标是(3,5),故选:C.【考点】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.8、B【解析】【分析】根据旋转的性质,以原点为中心,将点P(4,5)按逆时针方向旋转90°,即可得到点Q所在的象限.【详解】解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.【考点】本题考查了坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质.9、D【解析】【分析】根据平行四边形的性质、中心对称图形的定义和全等三角形的判定进行逐一判定即可.【详解】解:∵平行四边形是四边形的一种,∴平行四边形具有四边形的所有性质,故①正确:∵平行四边形绕其对角线的交点旋转180度能够与自身重合,∴平行四边形是中心对称图形,故②正确:∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,∠ADC=∠CBA∴△ADC≌△CBA(SAS)同理可以证明△ABD≌△CDB∴平行四边形的任一条对角线可把平行四边形分成两个全等的三角形,故③正确;∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∴,,,∴,∴平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形,故④正确.故选D.【考点】本题主要考查了中心对称图形的定义,平行四边形的性质,全等三角形的判定,三角形中线把面积分成相同的两部分等等,解题的关键在于能够熟练掌握相关知识进行求解.10、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB判断选项B不一定正确即可.【详解】解:∵绕点顺时针旋转得到,∴AC=CD,BC=EC,∠ACD=∠BCE,∴∠A=∠CDA=;∠EBC=∠BEC=,∴选项A、C不一定正确,∴∠A=∠EBC,∴选项D正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB不一定等于,∴选项B不一定正确;故选D.【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.二、填空题1、6秒或19.5秒【解析】【分析】设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),推出t≤45−12,即t≤33.利用平行线的性质,结合角度间关系,构建方程即可解答.【详解】解:设A灯旋转t秒,两灯的光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),∴t≤45﹣12,即t≤33.由题意,满足以下条件时,两灯的光束能互相平行:①如图,∠MAM'=∠PBP',12t=4(12+t),解得t=6;②如图,∠NAM'+∠PBP'=180°,12t﹣180+4(12+t)=180,解得t=19.5;综上所述,满足条件的t的值为6秒或19.5秒.故答案为:6秒或19.5秒.【考点】本题主要考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.2、四【解析】【分析】画出图形,利用图象解决问题即可.【详解】解:如图,所以在第四象限,故答案为:四.【考点】本题考查坐标与图形变化—旋转,解题的关键是正确画出图形,属于中考常考题型.3、72【解析】【分析】根据题意,五角星的五个角全等,根据图形间的关系可得答案.【详解】根据题意,五角星的顶点是一个正五边形的五个顶点,这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过4次旋转而得到,每次旋转的度数为360°除以5,为72度.故答案为:72【考点】此题主要考查了旋转对称图形,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等.4、55【解析】【分析】根据旋转的性质可得,,再由直角三角形两锐角互余,即可求解.【详解】解:∵把△ABC绕点C按顺时针方向旋转35°,得到∴,,∵,∴∴∠A=55°.故答案为:55【考点】本题主要考查了图形的旋转,直角三角形两锐角的关系,熟练掌握旋转的性质,直角三角形两锐角互余是解题的关键.5、(1,-1)【解析】【分析】由旋转的性质可得A的对应点为D,B的对应点为E,C的对应点为F,同时旋转中心在AD和BE的垂直平分线上,进而求出旋转中心坐标.【详解】解:由旋转的性质,得A的对应点为D,B的对应点为E,C的对应点为F作BE和AD的垂直平分线,交点为P∴点P的坐标为(1,-1)故答案为:(1,-1)【考点】本题考查坐标与图形变化—旋转,图形的旋转需结合旋转角求旋转后的坐标,常见的旋转角有30°,45°,60°,90°,180°.6、##【解析】【分析】当EP⊥AC时,EF有最小值,过点P作PM⊥EF于点M,由直角三角形的性质求出PE的长,由旋转的性质得出PE=PF,∠EPF=120°,求出PM的长,则可得出答案.【详解】解:如图,当EP⊥AC时,EF有最小值,过点P作PM⊥EF于点M,∵四边形ABCD是正方形,∴∠ACB=45°,∵E为BC的中点,BC=1,∴CE=,∴PE=CE=,∵将PE绕点P逆时针旋转120°得到PF,∴PE=PF,∠EPF=120°,∴∠PEF=30°,∴PM=PE=由勾股定理得EM=,∴EF=2EM=,∴EF的最小值是.故答案为:.【考点】本题考查了旋转的性质,正方形的性质,直角三角形的性质,垂线段的性质,熟练掌握旋转的性质是解题的关键.7、【解析】【分析】由旋转的性质可得,,由勾股定理可求EF的长.【详解】解:由旋转的性质可得,,,且,,,,故答案为.【考点】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键.8、【解析】【分析】先根据正方形的性质得到CD=1,∠CDA=90°,再利用旋转的性质得CF=,根据正方形的性质得∠CFE=45°,则可判断△DFH为等腰直角三角形,从而计算CF-CD即可.【详解】∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴CF=,∠CFDE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF-CD=-1.故答案为-1.【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.9、(-1,5)【解析】【分析】根据若两点关于坐标原点对称,横纵坐标均互为相反数,即可求解.【详解】解:∵点A(1,-5)关于原点的对称点为点B,∴点B的坐标为(-1,5).故答案为:(-1,5)【考点】本题主要考查了平面直角坐标系内点关于原点对称的特征,熟练掌握若两点关于坐标原点对称,横纵坐标均互为相反数是解题的关键.10、【解析】【分析】先求出,由旋转的性质,得到,,则,即可求出旋转角的度数.【详解】解:根据题意,∵,∴,由旋转的性质,则,,∴,∴;∴旋转角的度数是50°;故答案为:50°.【考点】本题考查了旋转的性质,三角形的内角和定理,解题的关键是熟练掌握旋转的性质进行计算.三、解答题1、(1)图见解析;;(2)图见解析;【解析】【分析】(1)画出关于原点对称的,写出的坐标即可;(2)画出绕点顺时针旋转后得到的,写出点的坐标即可.【详解】解:(1)如图即为所作,;(2)如图:即为所作,.【考点】本题考查了旋转作图,根据题意画出图形是解本题的关键.2、(1)BC=CE+DC,证明见解析;(2)7;(3)BD⊥CE,证明见解析【解析】【分析】(1)根据∠BAC=∠DAE=90°,得出∠BAD=∠CAE,证明△BAD≌△CAE(SAS),得出BD=CE即可;(2)根据∠ABC=∠ACB=45°,得出∠BAC=180°-∠ABC-∠ACB=90°,根据∠DAE=90°,可证∠BAD=∠CAE,可证△BAD≌△CAE,可得BD=CE=7;(3)由(2)得△BAD≌△CAE得出∠ADB=∠AEC,根据∠EAD=90°得出∠AEN+∠ANE=90°根据对顶角性质得出∠ANE=∠DNM

可求∠DNM+∠ADB=∠ANE+∠AEC=90°即可.【详解】证明:(1)结论:BC=CE+DC证明如下:∵∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE,∴∠BAD=∠CAE,∴△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∵BC=BD+DC,∴BC=CE+DC;(2)∵∠ABC=∠ACB=45°,∴∠BAC=180°-∠ABC-∠ACB=90°,∵∠DAE=90°,∴∠BAC+∠CAD=∠CAD+∠DAE,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=7;(3)结论:BD⊥CE.设EC与AD交于N,BD与CE交于M,如图2,由(2)得△BAD≌△CAE,∴∠ADB=∠AEC,∵∠EAD=90°,∴∠AEN+∠ANE=90°,∵∠ANE=∠DNM,∴∠DNM+∠ADB=∠ANE+∠AEC=90°,∴∠NMD=90°,∴BD⊥CE.【考点】本题考查三角形全等判定与性质,图形性质性质,线段和差,直线位置关系,掌握三角形全等判定与性质,图形性质性质,线段和差,直线位置关系是解题关键.3、见解析【解析】【分析】假设PB≥PC,从假设出发推出与已知相矛盾,得到假设不成立,则结论成立.【详解】证明:假设PB≥PC,如图,把△ABP绕点A逆时针旋转,使点B与点C重合,得到△ADC,连接PD,∵,∴;∴,∵,∴,∴,即,∵,∴,这与∠APB>∠APC相矛盾,∴PB≥PC不成立,∴PB<PC.【考点】此题主要考查了反证法的应用,解此题关键要懂得反证法的意义及步骤.4、(1)FG=BD,FG⊥BC;(2)①补全图形见解析;②结论仍然成立,理由见解析;(3)△BDF的面积为或.【解析】【分析】(1)根据等腰直角三角形的性质以及中位线定理可得结果;(2)①根据题意画出图形即可;②根据旋转的性质证明△ABD≌△ACE,结合中位线定理证明结论;(3)分两种情况进行讨论:当点D在点B的左侧时;当点D在点C的右侧时,分别画出图形结合等边三角形的性质解答.【详解】(1)∵∠BAC=90°,AB=AC,点D是BC的中点,∴AD⊥BC,AD=BD=CD,∠ABC=∠ACB=45°,∵F,G分别是DE,CD的中点,∴FGAD,FG∥AD,∴FGBD,FG⊥BC,故答案为:FGBD,FG⊥BC;(2)①补全图形如图所示;②结论仍然成立,理由如下:如图2,连接CE,∵把AD绕点A逆时针旋转90°得到AE,∴∠BAC=∠DAE=90°,AD=AE,∴∠BAD=∠CAE,又∵AB=AC,∴△ABD≌△ACE(SAS),∴CE=BD,∠ACE=∠B=∠ACB=45°,∴∠DCE=90°,∵F,G分别是DE,CD的中点,∴FGCEBD,FG∥CE,∴FG⊥BC;(3)当点D在点B的左侧时,如图3﹣1中,作AM⊥BC于M,连接FG,∵∠BAC=90°,AB=AC,AM⊥BC,∴BC=2,BM=CM=AMBC=1,∠BAM=∠CAM=45°,∵AD=AE,∠DAE=90°,点F是DE中点,∴∠EAF=∠CAM=45°,AF=FD=EF,∵△AFC是等边三角形,∴AF=AC=FC,∠FAC=∠AFC=∠ACF=60°,∴∠CAE=15°=∠BAD,∴∠ADM=∠ABC﹣∠BAD=30°,∴DMAM,∴BD=DM﹣BM,由(2)的结论可得:FG⊥BC,FGBD,∴△BDF的面积;当点D在点C的右侧时,如图3﹣2中,作AM⊥BC于M,连接FG,∵∠BAC=90°,AB=AC,AM⊥BC,∴BC=2,BM=CM=AMBC=1,∠BAM=∠CAM=45°,∵AD=AE,∠DAE=90°,点F是DE中点,∴∠EAF=∠CAM=45°,AF=FD=EF,∠DAF=45°,∵△AFC是等边三角形,∴AF=AC=FC,∠FAC=∠AFC=∠ACF=60°,∴∠CAD=∠CAF﹣∠DAF=15°,∴∠ADM=∠ACB﹣∠CAD=30°,∴DMAM,∴BD=DM+BM1,由(2)的结论可得:FG⊥BC,FGBD,∴△BDF的面积.综上所述:△BDF的面积为或.【考点】本题考查了等腰三角形的性质,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,熟练掌握以上性质定理是解本题的关键.5、(1)证明见解析(2)-1【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论