版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省界首市中考数学练习题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、点A(x,y)在第二象限内,且│x│=2,│y│=3,则点A关于原点对称的点的坐标为(
)A.(-2,3) B.(2,-3) C.(-3,2) D.(3,-2)2、若点P(2,)与点Q(,)关于原点对称,则m+n的值分别为(
)A. B. C.1 D.53、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为()A. B. C. D.4、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是()A. B. C. D.5、已知x1,x2是一元二次方程2x2-3x=5的两个实数根,下列结论错误的是()A.2-3x1=5 B.(x1-x2)(2x1+2x2-3)=0C.x1+x2= D.x1x2=二、多选题(5小题,每小题3分,共计15分)1、二次函数(a,b,c是常数,)的自变量x与函数值y的部分对应值如下表:x…-2-1012……tm22n…已知.则下列结论中,正确的是(
)A. B.和是方程的两个根C. D.(s取任意实数)2、下列语句中不正确的有(
)A.等弧对等弦 B.等弦对等弧C.相等的圆心角所对的弧相等 D.长度相等的两条弧是等弧3、在图形旋转中,下列说法正确的是(
)A.在图形上的每一点到旋转中心的距离相等B.图形上每一点转动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等4、等腰三角形三边长分别为a,b,3,且a,b是关于x的一元二次方程x2﹣8x﹣1+m=0的两根,则m的值为()A.15 B.16 C.17 D.185、下列说法中,正确的有()A.等弧所对的圆心角相等B.经过三点可以作一个圆C.平分弦的直径垂直于这条弦D.圆的内接平行四边形是矩形第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,在甲,,,,以点为圆心,的长为半径作圆,交于点,交于点,阴影部分的面积为__________(结果保留).2、如图,在⊙O中,弦AB⊥OC于E点,C在圆上,AB=8,CE=2,则⊙O的半径AO=___________.3、已知关于的一元二次方程,有下列结论:①当时,方程有两个不相等的实根;②当时,方程不可能有两个异号的实根;③当时,方程的两个实根不可能都小于1;④当时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.4、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是___________.5、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.四、简答题(2小题,每小题10分,共计20分)1、如图,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的长.2、已知有三条长度分别为2cm、4cm、8cm的线段,请再添一条线段.使这四条线段成比例,求所添线段的长度.五、解答题(4小题,每小题10分,共计40分)1、如图,AB是⊙O的直径,弦CD⊥AB于点E,点P⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若∠ABC=55°,求∠P的度数.2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?3、在平面直角坐标系xOy中,的半径为2.点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”.(1)如图,点A,B,C,D横、纵坐标都是整数.在点B,C,D中,与点A组成的“成对关联点”的点是______;(2)点在第一象限,点F与点E关于x轴对称.若点E,F是的“成对关联点”,直接写出t的取值范围;(3)点G在y轴上.若直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围.4、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为.求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由.-参考答案-一、单选题1、B【解析】【分析】根据A(x,y)在第二象限内可以判断x,y的符号,再根据|x|=2,|y|=3就可以确定点A的坐标,进而确定点A关于原点的对称点的坐标.【详解】∵A(x,y)在第二象限内,∴x<0y>0,又∵|x|=2,|y|=3,∴x=-2,y=3,∴点A关于原点的对称点的坐标是(2,-3).故选:B.【考点】本题考查了关于原点对称的点的坐标,由点所在的象限能判断出坐标的符号,同时考查了关于原点对称的点坐标之间的关系,难度一般.2、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答.【详解】解:∵P(2,-n)与点Q(-m,-3)关于原点对称,∴2=-(-m),-n=-(-3),∴m=2,n=-3,∴.故选:B.【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.3、B【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.【详解】解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;故取得的小正方体恰有三个面被涂色.的概率为.故选:B.【点睛】此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.4、A【分析】首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【详解】解:∵抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,∴正面都朝上的概率是:
.故选A.【点睛】本题考查了列举法求概率的知识.此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比.5、D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】解:∵x1、x2是一元二次方程2x2-3x=5的两个实数根,∴,故A正确,不符合题意;这里a=2,b=-3,c=-5,∴,,∵,∴,∴,故B、C正确,不符合题意,D错误,符合题意.故选:D.【考点】本题考查了一元二次方程根的意义,根与系数的关系等,熟练掌握根与系数的关系,,是解题的关键.二、多选题1、BC【解析】【分析】由表中数据,结合二次函数的对称性,可知,二次函数的对称轴为,结合抛物线对称轴为:,得出,由,,结合二次函数图象性质,逐一分析各个选项,即可作出相应的判断.【详解】解:由表格数据可知,当时,,将点代入中,可得.由表格数据可知,当时,;当时,;即抛物线对称轴为:,∵抛物线对称轴为:,∴,化简得,.∵,,∴抛物线解析式化为,.将点代入中,化简得,,∵,∴,解得.∵,∴.∵,,,∴,故A选项说法错误,不符合题意;∵二次函数对称轴为,∴和时,对应的函数值相等,∵时,对应函数值为,∴和是方程的两个根,故B选项说法正确,符合题意;由表中数据可知,二次函数过点和,将点和分别代入二次函数解析式中,可得,,,故,C选项说法正确,符合题意;∵,∴,∵,∴,即,∵,∴,s取任意实数,故D选项说法错误,不符合题意;故选:BC.【考点】本题考查了二次函数的图象性质,二次函数与一元二次方程的关系,深入理解函数概念,熟练掌握二次函数图象性质是解题的关键.2、BCD【解析】【分析】在同圆或是等圆中,相等的圆心角所对的弧相等,所对的弦相等;在同圆或等圆中,能够互相重合的两条弧是等弧,据此判断就可以得到正确答案.【详解】解:A、等弧对等弦,正确;B、缺少前提在同圆或等圆中,故选项错误;C、缺少前提在同圆或等圆中,故选项错误;D、缺少前提在同圆或等圆中,故选项错误;故选:BCD【考点】本题考查等弧的概念和圆心角、弦、弧之间的关系,根据相关知识点解题是关键.3、BCD【解析】【分析】根据旋转的性质分别对每一个选项进行判断即可.【详解】解:A、由旋转的性质可得,图形上对应点到旋转中心的距离相等,故此选项不符合题意;B、由旋转的性质可得,图形上的每一点转动的角度相同,故此选项符合题意;C、由旋转的性质可得,图形上可能存在不动点(例如此点为旋转中心),故此选项符合题意;D、由旋转的性质可得,图形上对应两点的连线与其对应两点的连线相等,故此选项符合题意;故选BCD.【考点】本题主要考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4、BC【解析】【分析】分3为底边长或腰长两种情况考虑:当3为底时,由a=b及a+b=8即可求出a、b的值,利用三角形的三边关系确定此种情况存在,再利用根与系数的关系即可求得的值;当3为腰时,则a、b中有一个为3,a+b=8即可求出b,再利用根与系数的关系即可求得的值.【详解】解:当3为腰时,此时a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此时方程为x2﹣8x+15=0,解得x1=3,x2=5;当3为底时,此时a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此时方程为x2﹣8x+16=0,解得x1=x2=4;综上所述,m的值为16或17.故答案为:BC.【考点】本题考查了一元二次方程根与系数的关系,等腰三角形的定义,分3为底边长或腰长两种情况讨论是解题的关键.5、AD【解析】【分析】根据圆的有关概念及性质,对选项逐个判断即可.【详解】解:A.等弧是能够完全重合的弧,因此等弧所对的圆心角相等,正确,符合题意;B.经过不在同一直线上的三点可以作一个圆,故原命题错误,不符合题意;C.平分弦(不是直径)的直径垂直于这条弦,故原命题错误,不符合题意;D.圆的内接平行四边形是矩形,正确,符合题意,正确的有A、D,故答案为:A、D.【考点】此题考查了圆的有关概念及性质,解题的关键是熟练掌握圆的相关概念以及性质.三、填空题1、【解析】【分析】连接BE,根据正切的定义求出∠A,根据扇形面积公式、三角形的面积公式计算即可.【详解】解:连接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE为等边三角形,∴∠ABE=30°,∴∠EBC=30°,∴阴影部分的面积=×2×2×+=故答案为.【考点】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式是解题的关键.2、5【分析】设⊙O的半径为r,则OA=r,OD=r-2,先由垂径定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【详解】解:设⊙O的半径为r,则OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半径长为5,故答案为:5.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.3、①③④【解析】【分析】由根的判别式,根与系数的关系进行判断,即可得到答案.【详解】解:根据题意,∵一元二次方程,∴;∴当,即时,方程有两个不相等的实根;故①正确;当,解得:,方程有两个同号的实数根,则当时,方程可能有两个异号的实根;故②错误;抛物线的对称轴为:,则当时,方程的两个实根不可能都小于1;故③正确;由,则,解得:或;故④正确;∴正确的结论有①③④;故答案为:①③④.【考点】本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关系,解题的关键是掌握所学的知识进行解题.4、【分析】根据圆心角为的扇形面积是进行解答即可得.【详解】解:这个扇形的面积.故答案是:.【点睛】本题考查了扇形的面积,解题的关键是掌握扇形的面积公式.5、60【分析】根据弧长公式求解即可.【详解】解:,解得,,故答案为:60.【点睛】本题考查了弧长公式,灵活应用弧长公式是解题的关键.四、简答题1、9【解析】【分析】过点A作AF⊥BC交BC于F,则由已知得:BC=2BF,首先由AB=AC,∠BAC=120°得∠B=∠C=30°,则在直角三角形BAE中求出AB,再在直角三角形AFB中求出BF,从而求出BC.【详解】解:过点A作AF⊥BC交BC于F,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,BC=2BF,在Rt△BAE中,AE=3cm,∴AB=cm,在Rt△AFB中,BF=AB•cos30°=,∴BC=2BF=2×=9.【考点】本题考查了等腰三角形的性质和解直角三角形,通过作辅助线构造直角三角形是解题关键2、1或4或16.【解析】【分析】根据成比例线段的性质求解即可.【详解】解:设添加的线段长度为x,当时,解得:;当时,解得:;当时,解得:.∴所添线段的长度为1或4或16.【考点】此题考查了线段成比例,解题的关键是熟练掌握线段成比例性质并分类讨论.五、解答题1、(1)证明见解析;(2)35°【解析】【详解】试题分析:(1)要证明CB∥PD,只要证明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解决问题;(2)在Rt△CEB中,求出∠C即可解决问题.试题解析:(1)如图,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【考点】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知识.2、(1)当时,四边形PQCD为平行四边形;(2)当t=2秒时,PQ与⊙O相切.【解析】【分析】(1)由题意得:,,则,再由四边形PQCD是平行四边形,得到DP=CQ,由此建立方程求解即可;(2)设PQ与⊙O相切于点H过点P作PE⊥BC,垂足为E.先证明四边形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切线长定理得到AP=PH,HQ=BQ,则PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,则122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【详解】解:(1)由题意得:,,∴,∵四边形PQCD是平行四边形,∴DP=CQ,∴,解得,∴当时,四边形PQCD为平行四边形;(2)设PQ与⊙O相切于点H过点P作PE⊥BC,垂足为E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四边形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB为⊙O的直径,∠ABC=∠DAB=90°,∴AD、BC为⊙O的切线,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD边运动的时间为秒.∵t=9>8,∴t=9(舍去),∴当t=2秒时,PQ与⊙O相切.【考点】本题主要考查了切线长定理,矩形的性质与判定,勾股定理,平行四边形的性质等等,解题的关键在于能够熟练掌握切线长定理.3、(1)B和C;(2);(3)【分析】(1)根据图形可确定与点A组成的“成对关联点”的点;(2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;(3)分类讨论:点G在上,点G在的下方和点G在的上方,构造的“成对关联点”,即可求出的取值范围.【详解】(1)如图所示:在点B,C,D中,与点A组成的“成对关联点”的点是B和C,故答案为:B和C;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年监理工程师考试《建设工程监理案例分析 (交通运输工程)》真题及答案
- 单招对数考试题目及答案
- 河南省高考题目及答案
- 舞蹈学的考试题目及答案
- 山西晋城单招题目及答案
- 办公室人力资源配置制度
- 钢管架搭设使用扣件生产制度
- 酒店销售部部门制度
- 英语考试卷子题目及答案
- 诊所医务人员医德医风规范制度
- (15)普通高中美术课程标准日常修订版(2017年版2025年修订)
- 四年级数学除法三位数除以两位数100道题 整除 带答案
- 村委会 工作总结
- 厂房以租代售合同范本
- 2025年“漂亮饭”社媒观察报告-艺恩
- 《TCEC1742018分布式储能系统远程集中监控技术规范》
- 护理急诊进修汇报
- SOAP病历书写课件
- 2025年时事政治考试题库及参考答案(100题)
- 2025年三年级语文上册期末测试卷:成语接龙竞赛训练试题
- 缝纫工作业指导书
评论
0/150
提交评论