




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省孟州市中考数学经典例题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为(
)A. B. C. D.2、若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1 B.﹣2 C.﹣1 D.23、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是()A.0.560 B.0.580 C.0.600 D.0.6204、如图,点A、B、C在上,,则的度数是()A.100° B.50° C.40° D.25°5、如图,在中,为的直径,和相切于点E,和相交于点F,已知,,则的长为(
)A. B. C. D.2二、多选题(5小题,每小题3分,共计15分)1、如图,的内切圆(圆心为点O)与各边分别相切于点D,E,F,连接.以点B为圆心,以适当长为半径作弧分别交于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线.下列说法正确的是(
)A.射线一定过点O B.点O是三条中线的交点C.若是等边三角形,则 D.点O不是三条边的垂直平分线的交点2、下列关于x的方程的说法正确的是()A.一定有两个实数根 B.可能只有一个实数根C.可能无实数根 D.当时,方程有两个负实数根3、下列说法中,正确的有()A.等弧所对的圆心角相等B.经过三点可以作一个圆C.平分弦的直径垂直于这条弦D.圆的内接平行四边形是矩形4、关于二次函数y=ax2+bx+c的图象有下列命题,其中正确的命题是()A.当c=0时,函数的图象经过原点;B.当c>0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;C.函数图象最高点的纵坐标是;D.当b=0时,函数的图象关于y轴对称.5、下列说法正确的是(
)A.“射击运动员射击一次,命中靶心”是随机事件B.某彩票的中奖机会是1%,买100张一定会中奖C.抛掷一枚质地均匀的硬币两次,则两次都是“正面朝上”的概率是D.某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、定义:由a,b构造的二次函数叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数的“本源函数”(a,b为常数,且).若一次函数y=ax+b的“滋生函数”是,那么二次函数的“本源函数”是______.2、一个直角三角形的两条直角边相差5cm,面积是7cm2,则其斜边的长是___.3、如图,已知,外心为,,,分别以,为腰向形外作等腰直角三角形与,连接,交于点,则的最小值是______.4、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.5、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:(1)如图(1)已知,,点P在BC边所在的直线l上移动,小方发现AP的最小值是______;(2)如图(2)在直角中,,,,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是______.四、简答题(2小题,每小题10分,共计20分)1、某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.2、冰墩墩是2022年北京冬季奥运会的吉祥物.冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.①求w关于x的函数解析式,并求每周总利润的最大值;②当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围.五、解答题(4小题,每小题10分,共计40分)1、如图,在中,,以AC为直径的半圆交斜边AB于点D,E为BC的中点,连结DE,CD.过点D作于点F.(1)求证:DE是的切线;(2)若,,求的半径.2、如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OB,求∠A的度数.3、关于x的一元二次方程kx2+(k+1)x+=0.(1)当k取何值时,方程有两个不相等的实数根?(2)若其根的判别式的值为3,求k的值及该方程的根.4、已知关于x的一元二次方程.(1)求证:不论m取何值,方程总有两个不相等的实数根;(2)若方程有两个实数根为,,且,求m的值.-参考答案-一、单选题1、C【解析】【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可.【详解】解:∵新正方形的边长为x+4,原正方形的边长为4,∴新正方形的面积为(x+4)2,原正方形的面积为16,∴y=(x+4)2-16=x2+8x,故选:C.【考点】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.2、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【详解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选C.【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3、C【分析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:∵由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,∴这名球员在罚球线上投篮一次,投中的概率为0.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.4、C【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA=40°,故选:C.【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5、C【解析】【分析】首先求出圆心角∠EOF的度数,再根据弧长公式,即可解决问题.【详解】解:如图连接OE、OF,∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°-∠D-∠DFO-∠DEO=30°,∴的长.故选:C.【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式.二、多选题1、AC【解析】【分析】根据三角形内切圆的性质逐个判断可得出答案.【详解】A、以点B为圆心,以适当长为半径作弧分别交于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线,由此可得BP是角平分线,所以射线一定过点O,说法正确,选项符合题意;B、边DE、EF、DF分别是圆的弦长,所以点O是△DEF三条边的垂直平分线的交点,选项不符合题意;C、当是等边三角形时,可以证得D、F、E分别是边的中点,根据中位线概念可得,选项符合题意;D、边DE、EF、DF分别是圆的弦长,所以点O是△DEF三条边的垂直平分线的交点,选项不符合题意;故选:AC.【考点】本题考查了三角形内切圆的特点和性质,解题的关键是能与其它知识联系起来,加以证明选项的正确.2、BD【解析】【分析】直接利用方程根与系数的关系以及根的判别式分析求出即可.【详解】解:当a=0时,方程整理为解得,∴选项B正确;故选项A错误;当时,方程是一元二次方程,∴∴此时的方程表两个不相等的实数根,故选项C错误;若时,,∴当时,方程有两个负实数根∴选项D正确,故选:BD【考点】此题主要考查了一元二次方程根的判别式和根与系数的关系,正确把握相关知识是解题关键.3、AD【解析】【分析】根据圆的有关概念及性质,对选项逐个判断即可.【详解】解:A.等弧是能够完全重合的弧,因此等弧所对的圆心角相等,正确,符合题意;B.经过不在同一直线上的三点可以作一个圆,故原命题错误,不符合题意;C.平分弦(不是直径)的直径垂直于这条弦,故原命题错误,不符合题意;D.圆的内接平行四边形是矩形,正确,符合题意,正确的有A、D,故答案为:A、D.【考点】此题考查了圆的有关概念及性质,解题的关键是熟练掌握圆的相关概念以及性质.4、ABD【解析】【分析】根据c与0的关系判断二次函数y=ax2+bx+c与y轴交点的情况;根据顶点坐标与抛物线开口方向判断函数的最值;根据函数y=ax2+c的图象与y=ax2图象相同,判断函数y=ax2+c的图象对称轴.【详解】解:A.c是二次函数y=ax2+bx+c与y轴的交点,所以当c=0时,函数的图象经过原点;B.c>0时,二次函数y=ax2+bx+c与y轴的交点在y轴的正半轴,又因为函数的图象开口向下,所以方程ax2+bx+c=0必有两个不相等的实根;C.当a<0时,函数图象最高点的纵坐标是;当a>0时,函数图象最低点的纵坐标是;由于a值不定,故无法判断最高点或最低点;D.当b=0时,二次函数y=ax2+bx+c变为y=ax2+c,又因为y=ax2+c的图象与y=ax2图象相同,所以当b=0时,函数的图象关于y轴对称.故选:ABD.【考点】二次函数y=ax2+bx+c最值,掌握当a<0时,函数的最大值是;当a>0时,函数的最小值是是解题关键.5、ACD【解析】【分析】根据随机事件的定义(随机事件是指在一定条件下可能发生也可能不发生的事件)可判断A;由于中奖的概率是等可能的,则买100张可能会中奖,可能不会中奖可判断B;利用列举法将所有可能列举出来,求满足条件的概率即可判断C;根据计算公式列出算式,即可判断D.【详解】解:A、“射击运动员射击一次,命中靶心”是随机事件,选项正确;B、由于中奖的概率是等可能的,则买100张可能会中奖,可能不会中奖,选项说法错误,不符合题意;C、抛掷一枚质地均匀的硬币两次,所有可能出现的结果有:(正,正),(正,反),(反,正),(反,反),则两次都是“正面朝上”的概率是,选项正确;D、根据计算公式该项人数等于该项所占百分比乘以总人数,,选项正确,符合题意.故选:ACD.【考点】本题主要考查随机事件的定义,概率发生的可能性、求随机事件的概率与求某项的人数,根据等可能事件的概率公式求解是解题关键.三、填空题1、【解析】【分析】由“滋生函数”和“本源函数”的定义,运用待定系数法求出函数的本源函数.【详解】解:由题意得解得∴函数的本源函数是.故答案为:.【考点】本题考查新定义运算下的一次函数和二次函数的应用,解题关键是充分理解新定义“本源函数”.2、cm【解析】【分析】设较短的直角边长是xcm,较长的就是(x+5)cm,根据面积是7cm,求出直角边长,根据勾股定理求出斜边长.【详解】解:设这个直角三角形的较短直角边长为xcm,则较长直角边长为(x+5)cm,根据题意,得,所以,解得,,因为直角三角形的边长为正数,所以不符合题意,舍去,所以x=2,当x=2时,x+5=7,由勾股定理,得直角三角形的斜边长为==cm.故答案为:cm.【考点】本题考查了勾股定理,一元二次方程的应用,关键是知道三角形面积公式以及直角三角形中勾股定理的应用.3、【分析】由与是等腰直角三角形,得到,,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,,得到,如图,当时,的值最小,解直角三角形即可得到结论.【详解】解:与是等腰直角三角形,,,在与中,,≌,,,,在以为直径的圆上,的外心为,,,如图,当时,的值最小,,,,,.则的最小值是,故答案为:.【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.4、【分析】利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案.【详解】解:由旋转得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴阴影部分的面积==,故答案为:..【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.5、105【分析】(1)如图,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD的最小值即可解决问题.【详解】解:如图作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为10.∴AP的最小值是10;(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC时,KD的值最小,∵,是等边三角形,∴,∴PC的最小值为5.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题.四、简答题1、(1)(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元【解析】【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;(2)根据总利润=每件利润×每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案.(1)解:设,把,和,代入可得,解得,则;(2)解:每月获得利润.∵,∴当时,P有最大值,最大值为3630.答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.【考点】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值.2、(1)每个冰墩墩钥匙扣的进价为12元(2)①,最大值为1960元;②每个冰墩墩玩偶售价x的范围为:【解析】【分析】(1)设每个冰墩墩钥匙扣的进价为x元,根据题意列出分式方程,进而计算求解即可;(2)①根据题意列出一次函数关系,根据一次函数的性质求得最大利润即可;②根据题意列出方程,根据二次函数的性质求得的范围,根据题意取整数解即可.(1)设每个冰墩墩钥匙扣的进价为x元,由题意得:,解得,经检验,是原方程的解且符合题意,答:每个冰墩墩钥匙扣的进价为12元;(2)①∵且x是大于20的正整数∴当时,w有最大值,最大值为1960元②售价为24元或25元或26元或27元或28元.解析如下:②由题意得,,解得或29∵抛物线开口向下,x是大于20的正整数∴当时,每周总利润不低于1870元,【考点】本题考查了分式方程的应用,二次函数的应用,一次函数的应用,根据题意列出方程或关系式是解题的关键.五、解答题1、(1)见解析(2)【分析】(1)连接,先根据等腰三角形的性质可得,再根据圆周角定理可得,然后根据直角三角形的性质可得,根据等腰三角形的性质可得,从而可得,最后根据圆的切线的判定即可得证;(2)连接,先利用勾股定理可得,设的半径为,从而可得,再在中,利用勾股定理即可得.(1)证明:如图,连接,,,是的直径,,,点是的中点,,,,即,又是的半径,是的切线;(2)解:如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国广电银川市2025秋招网申填写模板含开放题范文
- 雅安市中石化2025秋招面试半结构化模拟题及答案油品分析质检岗
- 鸡西市中石化2025秋招面试半结构化模拟题及答案安全环保与HSE岗
- 邢台市中石油2025秋招面试半结构化模拟题及答案安全环保与HSE岗
- 音乐老师招考试题及答案
- 中国移动通辽市2025秋招笔试行测题库及答案通信技术类
- 常州市中储粮2025秋招面试专业追问题库基建工程岗
- 永州市中储粮2025秋招面试典型题目及答案
- 2025年经典理论考试题及答案
- 中国移动郴州市2025秋招笔试行测题库及答案综合管理类
- GB/T 17219-2025生活饮用水输配水设备、防护材料及水处理材料卫生安全评价
- 出差工作安全培训课件
- 占道施工安全培训内容课件
- 2025年少先队大队委笔试试卷及答案
- 证券业反洗钱培训课件
- GJB3165A-2020航空承力件用高温合金热轧和锻制棒材规范
- 退换货方案及措施
- 2025年食药监局考试题库
- 密室逃脱消防应急预案
- 2025年协作机器人产业发展蓝皮书-高工咨询
- 《2024中国低空物流发展报告》
评论
0/150
提交评论