




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》定向攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、已知锐角,如图,(1)在射线上取点,,分别以点为圆心,,长为半径作弧,交射线于点,;(2)连接,交于点.根据以上作图过程及所作图形,下列结论错误的是(
)A. B.C.若,则 D.点在的平分线上2、有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是(
)A.边角边 B.角边角 C.边边边 D.角角边3、下列说法正确的是(
)A.两个长方形是全等图形 B.形状相同的两个三角形全等C.两个全等图形面积一定相等 D.所有的等边三角形都是全等三角形4、如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM,下列结论:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.15、如图,点O是△ABC中∠BCA,∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离是(
)A.1 B.2C.3 D.46、下列说法正确的是(
)①近似数精确到十分位;②在,,,中,最小的是;③如图所示,在数轴上点所表示的数为;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点.A.1 B.2 C.3 D.47、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带(
)A.第1块 B.第2块 C.第3块 D.第4块8、如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正确的有()A.①②③④ B.②③ C.②③④ D.③④9、如图,已知是的角平分线,是的垂直平分线,,,则的长为(
)A.6 B.5 C.4 D.10、如图,已知,,,则的长为(
)A.7 B.3.5 C.3 D.2第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、在△ABC中,∠C=90°,AD是△ABC的角平分线,BC=6、AC=8、AB=10,则点D到AB的距离为_______.2、如图,在与中,,,,若,则的度数为________.3、如图,给出下列结论:①;②;③;④.其中正确的有_______(填写答案序号).4、如图,若△ABC≌△ADE,且∠1=35°,则∠2=_____.5、如图,在中,D是上的一点,,平分,交于点E,连接,若,,则_______.6、如图,在四边形中,,,,点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动,设运动时间为,当与以,,为顶点的三角形全等时,点的运动速度为______.7、如图,在四边形中,,,,的延长线与、相邻的两个角的平分线交于点E,若,则的度数为___________.8、如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,∠A=∠D,BF=10,BC=6,则EC=_____.9、已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.10、如图,平分,.填空:因为平分,所以________.从而________.因此________.三、解答题(5小题,每小题6分,共计30分)1、如图,点B、C、D在同一直线上,△ABC、△ADE是等边三角形,CE=5,CD=2(1)证明:△ABD≌△ACE;(2)求∠ECD的度数;(3)求AC的长.2、如图,在四边形中,,,分别是,上的点,连接,,.(1)如图①,,,.求证:;
(2)如图②,,当周长最小时,求的度数;(3)如图③,若四边形为正方形,点、分别在边、上,且,若,,请求出线段的长度.3、如图,已知和中,,,,,,线段分别交,于点,.(1)请说明的理由;(2)可以经过图形的变换得到,请你描述这个变换;(3)求的度数.4、如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.5、已知:RtABC中,∠B=90°,D是BC上一点,DF⊥BC交AC于点H,且DF=BC,FG⊥AC交BC于点E.求证:AB=DE.-参考答案-一、单选题1、C【解析】【分析】根据题意可知,即可推断结论A;先证明,再证明即可证明结论B;连接OP,可证明可证明结论D;由此可知答案.【详解】解:由题意可知,,,故选项A正确,不符合题意;在和中,,,在和中,,,,故选项B正确,不符合题意;连接OP,,,在和中,,,,点在的平分线上,故选项D正确,不符合题意;若,,则,而根据题意不能证明,故不能证明,故选项C错误,符合题意;故选:C.【考点】本题考查角平分线的判定,全等三角形的判定与性质,明确以某一半径画弧时,准确找到相等的线段是解题的关键.2、A【解析】【详解】解:∵根据SAS得:△OAB≌△ODC.故选A.3、C【解析】【分析】性质、大小完全相同的两个图形是全等形,根据定义解答.【详解】A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形面积一定相等,故正确;D、所有的等边三角形大小不一定相同,故不一定是全等三角形;故选:C.【考点】此题考查全等图形的概念及性质,熟记概念是解题的关键.4、A【解析】【分析】由题意易得∠AOC=∠BOD,然后根据三角形全等的性质及角平分线的判定定理可进行求解.【详解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正确;过点O作OE⊥AC于点E,OF⊥BD于点F,BD与OA相交于点H,如图所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正确;所以正确的个数有4个;故选A.【考点】本题主要考查全等三角形的性质与判定及角平分线的判定定理,熟练掌握全等三角形的性质与判定及角平分线的判定定理是解题的关键.5、C【解析】【分析】过点O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得:OE=OF=OD然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=AB·OE+BC·OD+AC·OF=×OD×(AB+BC+AC)=×OD×8=12OD=3故选:C【考点】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.6、B【解析】【分析】根据近似数的精确度定义,可判断①;根据实数的大小比较,可判断②;根据点在数轴上所对应的实数,即可判断③;根据反证法的概念,可判断④;根据角平分线的性质,可判断⑤.【详解】①近似数精确到十位,故本小题错误;②,,,,最小的是,故本小题正确;③在数轴上点所表示的数为,故本小题错误;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;⑤在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确.故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键.7、B【解析】【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.【考点】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8、C【解析】【分析】利用旋转性质可得△ABF≌△ACD,根据全等三角形的性质一一判断即可.【详解】解:∵△ADC绕A顺时针旋转90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正确,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正确无法判断BE=CD,故①错误,故选:C.【考点】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型.9、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故选D.【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.10、C【解析】【分析】利用全等三角形的性质求解即可.【详解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故选C.【考点】本题主要考查了全等三角形的性质,熟知全等三角形对应边相等是解题的关键.二、填空题1、或【解析】【分析】作DE⊥AB于E,如图,先根据勾股定理计算出BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用面积法得到10x=6(8-x),然后解方程即可.【详解】解:作DE⊥AB于E,如图,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=DE•AB=AC•BD,即10x=8(6-x),解得x=,即点D到AB边的距离为.故答案为:.【考点】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,由已知能够注意到D到AB的距离即为DE长是解决的关键.2、40°【解析】【分析】先利用HL定理证明Rt△ABC≌Rt△DEF,得出∠D的度数,再根据直角三角形两锐角互余即可得出的度数.【详解】解:在Rt△ABC与Rt△DEF中,∵∠B=∠E=90°,AC=DF,AB=DE,∴Rt△ABC≌Rt△DEF(HL)∴∠D=∠A=50°,∴∠DFE=90°-∠D=90°-50°=40°.故答案为:40°.【考点】此题主要考查直角三角形全等的HL定理.理解斜边和一组直角边对应相等的两个直角三角形全等是解题关键.3、①③④【解析】【分析】利用AAS可证明△ABE≌△ACF,可得AC=AB,∠BAE=∠CAF,利用角的和差关系可得∠EAM=∠FAN,可得③正确,利用ASA可证明△AEM≌△AFN,可得EM=FN,AM=AN,可得①③正确;根据线段的和差关系可得CM=BN,利用AAS可证明△CDM≌△BDN,可得CD=DB,可得②错误;利用ASA可证明△ACN≌△ABM,可得④正确;综上即可得答案.【详解】在△ABE和△ACF中,,∴△ABE≌△ACF,∴AB=AC,∠BAE=∠CAF,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠FAN=∠EAM,故③正确,在△AEM和△AFN中,,∴△AEM≌△AFN,∴EM=FN,AM=AN,故①正确,∴AC-AM=AB-AN,即CM=BN,在△CDM和△BDN中,,∴CD=DB,故②错误,在△CAN和△ABM中,,∴△ACN≌△ABM,故④正确,综上所述:正确的结论有①③④,故答案为:①③④【考点】本题考查全等三角形的判定与性质,判定两个三角形全等的方法有:SSS、SAS、AAS、ASA、HL,注意:SSA、AAA不能判定三角形确定,当利用SAS证明时,角必须是两边的夹角;熟练掌握全等三角形的判定定理是解题关键.4、35°.【解析】【分析】根据全等的性质可得:∠EAD=∠CAB,再根据等式的基本性质可得∠1=∠2=35°.【详解】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案为35°.【考点】此题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解决此题的关键.5、55°【解析】【分析】根据SAS证明△ACE≌△DCE,根据全等三角形的性质可得∠CDE=∠A=100°,再根据三角形外角的性质可求∠BED.【详解】解:∵CE平分∠ACB,∴∠ACE=∠DCE,在△ACE与△DCE中,,∴△ACE≌△DCE(SAS),∴∠CDE=∠A=100°,∵∠B=45°,∴∠BED=∠CDE-∠B=100°-45°=55°,故答案为:55°.【考点】本题考查了全等三角形的判定与性质,三角形外角的性质,关键是得到∠CDE=∠A=100°.6、1或【解析】【分析】设点的运动速度为,由题意可得,与以,,为顶点的三角形全等时分为两种情况:,再利用全等三角形的性质求解即可.【详解】解:设点的运动速度为,由题意可得,∵∴与以,,为顶点的三角形全等时可分为两种情况:①当时,∴,∴∴∴此时点的运动速度为;②当时,,∴,∴,此时点的运动速度为,故答案为:1或.【考点】本题主要考查三角形全等的性质,掌握全等三角形的对应边相等是解题的关键,注意分情况讨论.7、【解析】【分析】先证明Rt△CDA≌Rt△CBA得到,再由角平分线的定义求出∠EDC=45°,最后根据三角形内角和定理求解即可.【详解】解:∵,,∴∠CDA=∠CBA=90°,在Rt△CDA和Rt△CBA中,,∴Rt△CDA≌Rt△CBA(HL),∴,∵DE平分与∠ADC相邻的角,∠ADC=90°,∴∠EDC=45°,∴∠CED=180°-∠DAE-∠ADC-∠EDC=15°,故答案为:15°.【考点】本题主要考查了全等三角形的性质与判定,三角形内角和定理,角平分线的定义,熟知全等三角形的性质与判定条件是解题的关键.8、2【解析】【分析】根据平行线的性质得出∠B=∠DEF,即可利用ASA证明△ABC≌△DEF,根据全等三角形的性质得出BC=EF=6,即可根据线段的和差得解.【详解】解:∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴BC=EF,∵BF=10,BC=6,∴EF=6,CF=BF﹣BC=4,∴EC=EF﹣CF=2,故答案为:2.【考点】此题考查了全等三角形的判定与性质,利用ASA证明△ABC≌△DEF是解题的关键.9、4.【解析】【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为4.【考点】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.10、
【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由内错角相等可以得出两直线平行.【详解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(内错角相等,两直线平行).故答案为:∠CAB,∠CAB,DC.【考点】本题考查了平行线的判定定理以及角平分线的定义,解题的关键是找出∠CAB=∠2.解决该类题型只需牢牢掌握平行线的判定定理即可.三、解答题1、(1)见解析(2)60°(3)3【解析】【分析】(1)根据等边三角形的性质利用SAS证明;(2)利用全等三角形的性质得到∠B=∠ACE=60°,计算即可得到答案;(3)利用全等的性质得到BD的长,再由等边三角形的性质,即可得到AC的长.(1)证明:∵△ABC和△ADE是等边三角形,∴AD=AE,AB=AC,∠BAC=∠DAE=∠ACB=60°,∴∠BAD=∠CAE,∴△ABD≌△ACE;(2)解:∵△ABD≌△ACE,∴∠B=∠ACE=60°,∴∠DCE=180°-∠ACB-∠ACE=60°;(3)解:∵△ABD≌△ACE,∴BD=CE=5,∴BC=BD-CD=5-2=3,∴AC=BC=3.【考点】此题考查了全等三角形的判定及性质,熟记全等三角形的几种判定定理:SSS,SAS,ASA,AAS,HL,并熟练应用是解题的关键.2、(1)见解析;(2);(3).【解析】【分析】(1)延长到点G,使,连接,首先证明,则有,,然后利用角度之间的关系得出,进而可证明,则,则结论可证;(2)分别作点A关于和的对称点,,连接,交于点,交于点,根据轴对称的性质有,,当点、、、在同一条直线上时,即为周长的最小值,然后利用求解即可;(3)旋转至的位置,首先证明,则有,最后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级生物教学全册教案集
- 建筑工程施工安全管理方案与实务指南
- 物业管理综合服务操作手册
- 现代医疗机构组织架构及职能分析
- 酒店餐饮服务礼仪及客户满意度提升
- 电子商务平台客服质量保障体系
- 沥青路面施工工艺及质量控制
- 2025船舶租赁合同书样本
- 2025年度城市供水合同
- 教师备课教案及学生作业反馈记录
- 网络交友新时代课件
- 2025年乡村医生公共卫生服务专业知识题库及答案解析
- 2024年江南大学公开招聘辅导员笔试题含答案
- 议论文写作入门基础任务式课件2025-2026学年统编版高中语文必修上册
- 佛州驾照考试试题题库及答案
- 《人工神经网络理论及应用》课件-第8章 深度神经网络-卷积神经网络(下)
- 索佳全站仪SET230RK3使用说明书
- 甘草中药课件
- 2025贵州贵阳机场安检站安检员岗位实习人员招聘笔试历年参考题库附带答案详解
- 建设工地试验室日常质量监督计划
- 基本生活能力评估表BADL使用指南
评论
0/150
提交评论