




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省应城市中考数学练习题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为()A.25° B.80° C.130° D.100°2、如果,那么的结果是(
)A. B. C. D.3、已知点在半径为8的外,则(
)A. B. C. D.4、下列方程中,一定是关于x的一元二次方程的是(
)A. B.C. D.5、将抛物线先绕坐标原点旋转,再向右平移个单位长度,所得抛物线的解析式为(
)A. B.C. D.二、多选题(5小题,每小题3分,共计15分)1、下列命题中,不正确的是(
)A.三点可确定一个圆B.三角形的外心是三角形三边中线的交点C.一个三角形有且只有一个外接圆D.三角形的外心必在三角形的内部或外部2、如图,AB为⊙O直径,弦CD⊥AB于E,则下面结论中正确的是(
)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE3、如图,已知抛物线.将该抛物线在x轴及x轴下方的部分记作C1,将C1沿x轴翻折构成的图形记作C2,将C1和C2构成的图形记作C3.关于图形C3,给出的下列四个结论,正确的是(
)A.图形C3恰好经过4个整点(横、纵坐标均为整数的点)B.图形C3上任意一点到原点的最大距离是1C.图形C3的周长大于2πD.图形C3所围成区域的面积大于2且小于π4、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象不可能是()A. B.C. D.5、下列四个说法中,不正确的是(
)A.一元二次方程有实数根B.一元二次方程有实数根C.一元二次方程有实数根D.一元二次方程x2+4x+5=a(a≥1)有实数根第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是_____.2、如图,在平行四边形中,,,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留)3、如果点与点B关于原点对称,那么点B的坐标是______.4、如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.5、皮影戏是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧.表演者在幕后操纵剪影、演唱,或配以音乐,具有浓厚的乡土气息.“皮影戏”中的皮影是______(填写“平行投影”或“中心投影”)四、简答题(2小题,每小题10分,共计20分)1、如图,在中,,,,为的中点.动点从点出发以每秒个单位向终点匀速运动(点不与、、重合),过点作的垂线交折线于点.以、为邻边构造矩形.设矩形与重叠部分图形的面积为,点的运动时间为秒.(1)直接写出的长(用含的代数式表示);(2)当点落在的边上时,求的值;(3)当矩形与重叠部分图形不是矩形时,求与的函数关系式,并写出的取值范围;(4)沿直线将矩形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合条件的的值.2、如图,AB为⊙O直径,AC为弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点H,且∠D=2∠A.(1)求证:DC与⊙O相切;(2)若⊙O半径为4,,求AC的长.五、解答题(4小题,每小题10分,共计40分)1、已知m是方程的一个根,试求的值.2、端午节是我国的传统节日,益民食品厂为了解市民对去年销量较好的花生粽子、水果粽子、豆沙粽子、红枣粽子(分别用A、B、C、D表示)这四种不同口味的粽子的喜爱情况,对某居民区的市民进行了抽样调查,并根据调查结果绘制了如下两幅不完整的统计图.(1)本次参加抽样调查的居民有多少人?(2)将两幅统计图补充完整;(3)小明喜欢吃花生粽子和红枣粽子,妈妈为他准备了四种粽子各一个,请用“列表法”或“画树形图”的方法,求出小明同时选中花生粽子和红枣粽子的概率.3、已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.4、如图1,在等腰直角三角形中,.点,分别为,的中点,为线段上一动点(不与点,重合),将线段绕点逆时针方向旋转得到,连接,.(1)证明:;(2)如图2,连接,,交于点.①证明:在点的运动过程中,总有;②若,当的长度为多少时,为等腰三角形?-参考答案-一、单选题1、D【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圆周角定理得,∠AOC=2∠B=100°,故选:D.【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.2、B【解析】【分析】根据比例的性质即可得到结论.【详解】∵=,∴可设a=2k,b=3k,∴==-.故选B.【考点】本题主要考查了比例的性质,解本题的要点根据题意可设a,b的值,从而求出答案.3、A【解析】【分析】根据点P与⊙O的位置关系即可确定OP的范围.【详解】解:∵点P在圆O的外部,∴点P到圆心O的距离大于8,故选:A.【考点】本题主要考查点与圆的位置关系,关键是要牢记判断点与圆的位置关系的方法.4、B【解析】【分析】根据一元二次方程的概念(只含一个未知数,并且含有未知数的项的次数最高为2次的整式方程是一元二次方程)逐一进行判断即可得.【详解】解:A、,当时,不是一元二次方程,故不符合题意;B、,是一元二次方程,符合题意;C、,不是整式方程,故不符合题意;D、,整理得:,不是一元二次方程,故不符合题意;故选:B.【考点】本题考查了一元二次方程的定义,熟练掌握其定义是解题的关键.5、C【解析】【分析】先根据点绕坐标原点旋转的坐标变换规律、待定系数法求出旋转后的抛物线的解析式,再根据二次函数的图象平移的规律即可得.【详解】将抛物线的顶点式为则其与x轴的交点坐标为,顶点坐标为点绕坐标原点旋转的坐标变换规律:横、纵坐标均变为相反数则绕坐标原点旋转后,所得抛物线与x轴的交点坐标为,顶点坐标为设旋转后所得抛物线为将点代入得:,解得即旋转后所得抛物线为则再向右平移个单位长度,所得抛物线的解析式为即故选:C.【考点】本题考查了点绕坐标原点旋转的坐标变换规律、待定系数法求二次函数解析式、二次函数的图象平移的规律,熟练掌握坐标旋转变换规律和二次函数的图象平移规律是解题关键.二、多选题1、ABD【解析】【分析】根据圆的性质定理逐项排查即可.【详解】解:A.不在同一条直线上的三点确定一个圆,故本选项错误;B.三角形的外心是三角形三边垂直平分线的交点,所以本选项是错误;C.三角形的外接圆是三条垂直平分线的交点,有且只有一个交点,所以任意三角形一定有一个外接圆,并且只有一个外接圆,所以本选项是正确的;D.直角三角形的外心在斜边中点处,故本选项错误.故选:ABD.【考点】考查确定圆的条件以及三角形外接圆的知识,掌握三角形的外接圆是三条垂直平分线的交点是解题的关键.2、ABC【解析】【分析】根据垂径定理知,垂直于弦的直径平分弦,并且平分线所对的两条弧,即可判断A选项、B选项正确,由圆周角定理知,在同圆或等圆中,同弧所对的圆周角相等,可判断C选项正确,题目中并没有提到E是OB中点,所以不能证明OE=BE.【详解】A.AB为⊙O直径,弦CD⊥AB于E,由垂径定理得:CE=DE,A选项正确;B.由垂径定理得:,B选项正确;C.,由圆周角定理得:∠BAC=∠BAD,C选项正确;D.E不一定是OB中点,所以不能证明OE=BE,D错误.故选:ABC.【考点】本题考查垂径定理和圆周角定理,熟知垂直于弦的直径平分弦,并且平分线所对的两条弧是解题的关键.3、ABD【解析】【分析】画出图象C3,以及以O为圆心,以1为半径的圆,再作出⊙O内接正方形,根据图象即可判断.【详解】解:如图所示,A.图形C3恰好经过(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4个整点,故正确;B.由图象可知,图形C3上任意一点到原点的距离都不超过1,故正确;C.图形C3的周长小于⊙O的周长,所以图形C3的周长小于2π,故错误;D.图形C3所围成的区域的面积小于⊙O的面积,大于⊙O内接正方形的面积,所以图形C3所围成的区域的面积大于2且小于π,故正确;故选:ABD.【考点】本题考查了二次函数的图象与几何变换,数形结合是解题的关键.4、ABD【解析】【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【详解】A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线来说,对称轴x=<0,应在y轴的左侧,图形错误,故符合题意.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线来说,图象应开口向下,故不合题意,图形错误,故符合题意.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线来说,图象开口向下,对称轴x=位于y轴的右侧,图形正确,故不符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线来说,图象开口向下,a<0,故不合题意,图形错误,故符合题意.故选ABD.【考点】主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.5、ABC【解析】【分析】判断上述方程的根的情况,只要看根的判别式△的值的符号就可以了.【详解】解:、△,方程无实数根,错误,符合题意;、△,方程无实数根,错误,符合题意;、△,方程无实数根,错误,符合题意;、△,方程有实数根,正确,不符合题意;故选:ABC.【考点】本题考查了一元二次方程根的情况与判别式△的关系:解题的关键是掌握(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.三、填空题1、﹣3<x<1【解析】【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.【详解】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.【考点】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键.2、【分析】过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.【详解】解:过点C作于点H,在平行四边形中,平行四边形的面积为:,图中黑色阴影部分的面积为:,故答案为:.【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.3、【分析】关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B坐标.【详解】解:由题意知点B横坐标为;纵坐标为;故答案为:.【点睛】本题考查了关于原点对称的点的坐标知识.解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数.4、【分析】过O作OC垂直于弦AB,利用垂径定理得到C为AB的中点,然后由OA=OB,且∠AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由C为AB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OA及AC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离.【详解】解:过O作OC⊥AB,则有C为AB的中点,∵OA=OB,∠AOB=90°,AB=a,∴根据勾股定理得:OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根据勾股定理得:OC==.故答案为:;【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.5、中心投影【分析】根据平行投影和中心投影的定义解答即可.【详解】解:“皮影戏”中的皮影是中心投影.故答案是中心投影.【点睛】本题主要考查了平行投影和中心投影,中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影.四、简答题1、(1),;(2);(3);(4)或.【解析】【分析】(1)根据P点的运动速度和BD的长度即可出结果;(2)画出图象,根据三角形的相似求出各个线段长,即可解决;(3)分情况讨论,矩形与重叠部分面积即为矩形面积减去△ABC外部的小三角形面积,通过三角函数计算出各边长求面积即可;(4)要想使被直线分割成的两部分能拼成不重叠且无缝隙的图形恰好是三角形,则需要被分割的是两个至少有一条相等边长的直角三角形,或者直线正好过正方形一条边的中点,分情况画图求解即可.【详解】解:(1)∵,为的中点,∴,P从B运动到点D所需时间为1s,由题意可知,;(2)如图所示,由题意得,∴,∵,,,∴,∴,由四边形是矩形可知,∠QPD=∠MDP=90°,PQ=DM,即∠APQ=∠BDM=90°,∵∠B=∠B,∠BDM=∠ACB=90°,∴△MDB∽△ACB,∴,即,∴,即∵∠A=∠A,∠APQ=∠ACB=90°,∴△APQ∽△ACB,∴,即,解得;(3)当时,如图,DM交BC于点F,由矩形可知PD∥QM,∴∠FQM=∠B=30°,此时,∴,∴,解得,,同理,,解得,,,当时,如图,DM交BC于点F,QM交BC于E,,由题意可知∠A=60°,,∴,即,,得,∴,∵,∴,,,∴,综上所述:;(4)如图所示,当Q与C重合时,满足条件,由前面解题过程可知此时,当PQ=DM时,此时直线CD正好过QM的中点,满足条件,此时,当直线CD正好过PQ的中点G时,满足条件,如图,由前面计算可知,则,,解得,综上所述,或.【考点】本题考查了动点问题,熟练掌握三角函数,矩形的性质是解题的关键.2、(1)证明见解析(2)【解析】【分析】(1)连接OC,由圆周角定理和已知条件得出∠BOC=∠D,证出∠OCH=90°,得出DC⊥OC,即可得出结论;(2)作AG⊥CD于G,则AG∥OC,由三角函数定义求出OH=OC=5,得出AH=OA+OH=9,由勾股定理得出CH==3,证△OCH∽△AGH,求出AG=OC=,GH=CH=,得出CG=GH﹣CH=,再由勾股定理即可得出答案.【详解】(1)证明:连接OC,如图1所示:∵DE⊥OA,∴∠HED=90°,∴∠H+∠D=90°,∵∠BOC=2∠A,∠D=2∠A,∴∠BOC=∠D,∴∠H+∠BOC=90°,∴∠OCH=90°,∴DC⊥OC,∴DC与⊙O相切;(2)作AG⊥CD于G,如图2所示:则AG∥OC,∵DC⊥OC,∴∠OCH=90°,∵∠BOC=∠D,OC=4,∴cos∠BOC==,∴OH=OC=5,∴AH=OA+OH=4+5=9,CH===3,∵AG∥OC,∴△OCH∽△AGH,∴===,∴AG=OC=,GH=CH=,∴CG=GH﹣CH=﹣3=,∴AC===.【考点】本题考查圆的综合问题,涉及切线的判定、勾股定理、锐角三角函数,相似三角形等知识,属于中等题型.熟练掌握圆的切线的证明方法以及圆周角定理是解题的关键.五、解答题1、2015【解析】【分析】先根据一元二次方程的解的定义得到,变形有或,再利用整体思想进行计算.【详解】解:∵m是方程的一个根,代入即得.∴或.∴.【考点】本题考查了一元二次方程的解的定义,解题的关键是适当选择整体代入法,使得解答变得简单.2、(1)本次参加抽样调查的居民有600人;(2)见解析;(3).【解析】【分析】(1)用喜欢B类的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢C类的人数,再计算出喜欢A类的人数的百分比和喜欢C类的人数的百分比,然后补全条形统计图和扇形统计图;(3)画树状图展示所有12种等可能的结果数,找出小明同时选中花生粽子和红枣粽子的结果数,然后根据概率公式求解.【详解】(1)60÷10%=600,所以本次参加抽样调查的居民有600人;(2)喜欢C类的人数为600﹣180﹣60﹣240=120(人),喜欢A类的人数的百分比为×100%=30%;喜欢C类的人数的百分比为×100%=20%;两幅统计图补充为:(3)画树状图为:共有12种等可能的结果数,其中小明同时选中花生粽子和红枣粽子的结果数为2,所以小明同时选中花生粽子和红枣粽子的概率==.【考点】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.3、(1)1秒;(2)不可能,见解析【解析】【分析】(1)经过x秒钟,△PBQ的面积等于4cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解;(2)看△PBQ的面积能否等于7cm2,只需令×2x(5﹣x)=7,化简该方程后,判断该方程的△与0的关系,大于或等于0则可以,否则不可以.【详解】解:(1)设经过x秒以后△PBQ面积为4cm2,根据题意得(5﹣x)×2x=4,整理得:x2﹣5x+4=0,解得:x=1或x=4(舍去).答:1秒后△PBQ的面积等于4cm2;(2)由(1)同理可得(5﹣x)2x=7.整理,得x2﹣5x+7=0,因为b2﹣4ac=25﹣28<0,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025昆明市第二人民医院融城老年病医院(5人)考前自测高频考点模拟试题及答案详解一套
- 2025贵州黔晨综合发展有限公司招聘录用人员模拟试卷完整参考答案详解
- 2025江苏连云港灌江农业发展集团有限公司招聘拟聘(第二批)考前自测高频考点模拟试题及答案详解(夺冠)
- 2025技术岗位劳动合同范本
- 2025贵州铜仁市江口县人民医院招聘青年就业见习岗位人员2人模拟试卷附答案详解(黄金题型)
- 2025大连市产品购销合同
- 2025湖北交投实业发展有限公司服务区管理员遴选人员模拟试卷及答案详解(新)
- 编导理论考试题库及答案
- 福建电力考试题库及答案
- 员工培训资料与认证管理工具
- 网格员调解员培训
- 船舶管路修理技术要求
- 智慧审计数字化场景DeepSeek+AI智算一体机设计方案
- 儿童再生障碍性贫血治疗讲课件
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
- 中建土木-基础设施工程安全生产管理标准化图册(试行)
- 生育支持政策效果评估-洞察及研究
- 电子商务概论(第7版)课件 第三章 电子商务支撑技术
- 节目演出安全协议书
- 医学检验科PDCA质量改进案例解析
- 《汽修维修业务接待实务》课件项目1-任务3-积累保养知识(保养+养护用品)
评论
0/150
提交评论