基础强化人教版8年级数学上册《全等三角形》专项攻克试卷(详解版)_第1页
基础强化人教版8年级数学上册《全等三角形》专项攻克试卷(详解版)_第2页
基础强化人教版8年级数学上册《全等三角形》专项攻克试卷(详解版)_第3页
基础强化人教版8年级数学上册《全等三角形》专项攻克试卷(详解版)_第4页
基础强化人教版8年级数学上册《全等三角形》专项攻克试卷(详解版)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《全等三角形》专项攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、下列关于全等三角形的说法不正确的是A.全等三角形的大小相等 B.两个等边三角形一定是全等三角形C.全等三角形的形状相同 D.全等三角形的对应边相等2、如图,△ABC是边长为4的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC至点Q,使CQ=PA,连接PQ交AC于点D,则DE的长为()A.1 B.1.8 C.2 D.2.53、如图,已知,,,是上的两个点,,,若,,,则的长为(

)A. B. C. D.4、如图,在中,是边上的高,平分,交于点,若,,则的面积等于()A.36 B.48 C.60 D.725、如图,在中,,,点E在BC的延长线上,的平分线BD与的平分线CD相交于点D,连接AD,则下列结论中,正确的是A. B. C. D.6、如图给出了四组三角形,其中全等的三角形有(

)组.A.1 B.2 C.3 D.47、如图①,已知,用尺规作它的角平分线.如图②,步骤如下:第一步:以B为圆心,以a为半径画弧,分别交射线,于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在内部交于点P;第三步;画射线,射线即为所求.下列叙述不正确的是(

)A. B.作图的原理是构造三角形全等C.由第二步可知, D.的长8、如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM,下列结论:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.19、下列各组的两个图形属于全等图形的是(

)A. B. C. D.10、如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是()A.SAS B.ASA C.AAS D.HL第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、如图,已知,,添加一个条件,使,你添加的条件是______(填一个即可).2、如图,四边形ABCD,连接BD,AB⊥AD,CE⊥BD,AB=CE,BD=CD.若AD=5,CD=7,则BE=________.3、如图,,若,则到的距离为_________.4、如图,在中,,点,都在边上,,若,则的长为_______.5、如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.6、要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是____________.7、如图,图形的各个顶点都在33正方形网格的格点上.则______.8、如图,与的顶点A、B、D在同一直线上,,,,延长分别交、于点F、G.若,,则______.9、在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是_____.10、已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.三、解答题(5小题,每小题6分,共计30分)1、在中,BE,CD为的角平分线,BE,CD交于点F.(1)求证:;(2)已知.①如图1,若,,求CE的长;②如图2,若,求的大小.2、已知:如图,,,.求证:.3、如图1,点P、Q分别是边长为4cm的等边三角形ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P,Q运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P、Q运动几秒时,是直角三角形?(4)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则变化吗?若变化说明理由,若不变,则求出它的度数。4、如图,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度数.5、如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.-参考答案-一、单选题1、B【解析】【分析】根据全等三角形的定义与性质即可求解.【详解】A、全等三角形的大小相等,说法正确,故A选项错误;B、两个等边三角形,三个角对应相等,但边长不一定相等,所以不一定是全等三角形,故B选项正确;C、全等三角形的形状相同,说法正确,故C选项错误;D、全等三角形的对应边相等,说法正确,故D选项错误.故选B.【考点】本题考查了全等三角形的定义与性质,能够完全重合的两个三角形叫做全等三角形,即形状相同、大小相等两个三角形叫做全等三角形;全等三角形的对应边相等,对应角相等.2、C【解析】【分析】过作的平行线交于,通过证明≌,得,再由是等边三角形,即可得出.【详解】解:过作的平行线交于,,是等边三角形,,,是等边三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等边三角形,,,,,,故选:C.【考点】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键.3、B【解析】【分析】由题意可证可得可求EF的长.【详解】解:在和中,故选:B.【考点】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.4、B【解析】【分析】作交于点,然后根据角平分线的性质,可以得到,再根据三角形的面积公式,即可求得的面积.【详解】解:作交于点,∵是边上的高,∴,∵平分,∴∵,,∴.故选:B.【考点】本题考查了三角形的面积和角平分线性质.理解和掌握角的平分线的性质定理是解题的关键.5、B【解析】【分析】由∠ABC=50°,∠ACB=60°,可判断出AC≠AB,根据三角形内角和定理可求出∠BAC的度数,根据邻补角定义可求出∠ACE度数,由BD平分∠ABC,CD平分∠ACE,根据角平分线的定义以及三角形外角的性质可求得∠BDC的度数,继而根据三角形内角和定理可求得∠DOC的度数,据此对各选项进行判断即可得.【详解】∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=70°,∠ACE=180°-∠ACB=120°,AC≠AB,∵BD平分∠ABC,CD平分∠ACE,∴∠DBC=∠ABC=25°,∠DCE=∠ACD=∠ACE=60°,∴∠BDC=∠DCE-∠DBC=35°,∴∠DOC=180°-∠OCD-∠ODC=180°-60°-35°=85°,∵∠DBC=25°,∠BDC=35°,∴BC≠CD,故选B.【考点】本题考查了三角形内角和定理,等腰三角形判定,角平分线的定义等,熟练掌握角平分线的定义以及三角形内角和定理是解本题的关键.6、D【解析】【详解】分析:根据全等三角形的判定解答即可.详解:图A可以利用AAS证明全等,图B可以利用SAS证明全等,图C可以利用SAS证明全等,图D可以利用ASA证明全等..其中全等的三角形有4组,故选D.点睛:此题考查全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较典型,难度适中.7、D【解析】【分析】根据用尺规作图法画已知角的角平分线的基本步骤判断即可【详解】解:A、∵以a为半径画弧,∴,故正确B、根据作图步骤可知BD=BE,PD=PE,BP=BP,∴△BDP≌△BEP(SSS),故正确C、∵分别以D,E为圆心,以b为半径画弧,两弧在内部交于点P,∴,故正确D、分别以D,E为圆心,以b为半径画弧,其中,否则两个圆弧没有交点,故错误故选:D【考点】本题考查用尺规作图法画已知角的角平分线及理论依据,熟练尺规作图的基本步骤是关键8、A【解析】【分析】由题意易得∠AOC=∠BOD,然后根据三角形全等的性质及角平分线的判定定理可进行求解.【详解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正确;过点O作OE⊥AC于点E,OF⊥BD于点F,BD与OA相交于点H,如图所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正确;所以正确的个数有4个;故选A.【考点】本题主要考查全等三角形的性质与判定及角平分线的判定定理,熟练掌握全等三角形的性质与判定及角平分线的判定定理是解题的关键.9、D【解析】【分析】根据全等图形的定义,逐一判断选项,即可.【详解】解:A、两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形不能完全重合,不是全等图形,符合题意,C.两个图形不能完全重合,不是全等图形,不符合题意,D.两个图形能完全重合,是全等图形,不符合题意,故选D.【考点】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键.10、D【解析】【详解】∵在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),故选D.二、填空题1、(答案不唯一)【解析】【分析】此题是一道开放型的题目,答案不唯一,先根据∠BCE=∠ACD求出∠BCA=∠DCE,再根据全等三角形的判定定理SAS推出即可.【详解】解:添加的条件是CB=CE,理由是:∵∠BCE=∠ACD,∴∠BCE+∠ECA=∠ACD+∠ECA,∴∠BCA=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),故答案为:CB=CE(答案不唯一).【考点】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.2、2【解析】【分析】根据HL证明,可得,根据即可求解.【详解】解:AB⊥AD,CE⊥BD,,在与中,,,AD=5,CD=7,,BD=CD=7,故答案为:2【考点】本题考查了全等三角形的性质与判定,掌握HL证明三角形全等是解题的关键.3、4【解析】【分析】过P点作PE⊥OB于E,根据角平分线的性质定理可得PE=PD,即可求解.【详解】解:如图,过P点作PE⊥OB于E,∵,PE⊥OB,∴PE=PD=4,即P到OB的距离是4,故答案为:4.【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质定理是解题的关键.4、9.【解析】【分析】根据等腰三角形的性质及全等三角形的判定与性质即可求解.【详解】因为△ABC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD△ACE(ASA),所以BD=EC,EC=9.【考点】此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与性质.5、70【解析】【分析】先利用HL证明△ABE≌△CBF,可证∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【详解】∵∠ABC=90°,AB=AC,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为70.【考点】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.6、ASA【解析】【分析】由已知可以得到∠ABC=∠BDE=90°,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【详解】∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故答案为ASA【考点】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找到隐含条件并熟练掌握全等三角形的判定定理是解题关键.7、45°或45度【解析】【分析】通过证明三角形全等得出∠1=∠3,再根据∠1+∠2=∠3+∠2即可得出答案.【详解】解:如图所示,由题意得,在Rt△ABC和Rt△EFC中,∵∴Rt△ABC≌Rt△EFC(SAS)∴∠3=∠1∵∠2+∠3=90°∴∠1+∠2=∠3+∠2=90°故答案为:45°【考点】本题主要考查了全等三角形的判定和性质,由证明三角形全等得出∠1=∠3是解题的关键.8、或110度【解析】【分析】先证明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性质求解.【详解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案为:110°.【考点】本题考查了平行线的性质,全等三角形的判定与性质,以及三角形外角的性质,熟练掌握三角形的外角等于不相邻的两个内角和是解答本题的关键.9、4:3【解析】【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【详解】∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.10、4.【解析】【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为4.【考点】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.三、解答题1、(1)证明见解析;(2)2.5;(3)100°.【解析】【分析】(1)由三角形内角和定理和角平分线得出的度数,再由三角形内角和定理可求出的度数,(2)在BC上取一点G使BG=BD,构造(SAS),再证明,即可得,由此求出答案;(3)延长BA到P,使AP=FC,构造(SAS),得PC=BC,,再由三角形内角和可求,,进而可得.【详解】解:(1)、分别是与的角平分线,,,,(2)如解(2)图,在BC上取一点G使BG=BD,由(1)得,,,∴,在与中,,∴(SAS)∴,∴,∴,∴在与中,,,,,;∵,,∴(3)如解(3)图,延长BA到P,使AP=FC,,∴,在与中,,∴(SAS)∴,,∴,又∵,∴,又∵,∴,∴,,∴,【考点】本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.2、见解析【解析】【分析】连接AC,首先根据“HL”判定△ABC△CDA,得到AD=BC,再证△ADO△CBO,则可得到需证的结论.【详解】证明:连接AC.在Rt△ABC和Rt△CDA中,∴△ABC△CDA.∴AD=BC.∵,,∴∠AD0=∠CB0=90°.又∵∠AOD=∠COB,∴△ADO△CBO.∴.【考点】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3、(1)见解析;(2)∠CMQ=60°,不变;(3)当第秒或第秒时,△PBQ为直角三角形;(4)∠CMQ=120°,不变.【解析】【分析】(1)利用SAS可证全等;(2)先证△ABQ≌△CAP,得出∠BAQ=∠ACP,通过角度转化,可得出∠CMQ=60°;(3)存在2种情况,一种是∠PQB=90°,另一种是∠BPQ=90°,分别根据直角三角形边直角的关系可求得t的值;(4)先证△PBC≌△ACQ,从而得出∠BPC=∠MQC,然后利用角度转化可得出∠CMQ=120°.【详解】(1)证明:在等边三角形ABC中,AB=AC,∠B=∠CAP=60°又由题中“点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.”可知:AP=BQ∴≌;(2)∠CMQ=60°不变∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;(3)设时间为t,则AP=BQ=t,PB=4-t,①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4-t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BQ,得t=2(4-t),t=;∴当第秒或第秒时,△PBQ为直角三角形;(4)∠CMQ=120°不变,∵在等边三角形中,AB=AC,∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论