考点解析人教版8年级数学上册《轴对称》单元测试试卷(含答案详解版)_第1页
考点解析人教版8年级数学上册《轴对称》单元测试试卷(含答案详解版)_第2页
考点解析人教版8年级数学上册《轴对称》单元测试试卷(含答案详解版)_第3页
考点解析人教版8年级数学上册《轴对称》单元测试试卷(含答案详解版)_第4页
考点解析人教版8年级数学上册《轴对称》单元测试试卷(含答案详解版)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《轴对称》单元测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A.750米 B.1000米 C.1500米 D.2000米2、下列标志图形属于轴对称图形的是()A. B.C. D.3、下列标志中,可以看作是轴对称图形的是()A. B. C. D.4、在平面直角坐标系中,点关于轴对称的点的坐标为(

)A. B. C. D.5、如图,在中,,的周长10,和的平分线交于点,过点作分别交、于、,则的长为(

)A.10 B.6 C.4 D.不确定6、等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是(

)A.或或 B.或C.或 D.或7、在中,,,,则的长度为(

)A. B. C. D.8、已知点P(2021,﹣2021),则点P关于x轴对称的点的坐标是(

)A.(﹣2021,2021) B.(﹣2021,﹣2021)C.(2021,2021) D.(2021,﹣2021)9、如图,若,则下列结论中不一定成立的是(

)A. B. C. D.10、如图,在中,,观察图中尺规作图的痕迹,则的度数为(

)A. B. C. D.第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、如图,在中,,,分别以点A,B为圆心,大于的长为半径作弧,两弧分别相交于点M,N,作直线,交于点D,连接,则的度数为_____.2、如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处.若,则为_________.3、如图,,若,则________.4、已知,点P为内一点,点A为OM上一点,点B为ON上一点,当的周长取最小值时,的度数为_______________.5、点(3,0)关于y轴对称的点的坐标是_______6、如图,为内部一条射线,点为射线上一点,,点分别为边上动点,则周长的最小值为______.7、如图,一束光沿方向,先后经过平面镜、反射后,沿方向射出,已知,,则_________.8、如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为________.9、在平面直角坐标系中,点与点关于轴对称,则的值是_____.10、如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=,AE=,则用含、的代数式表示△ABC的周长为__________.三、解答题(5小题,每小题6分,共计30分)1、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)画出△ABC的各点纵坐标不变,横坐标乘﹣1后得到的△;(2)画出△的各点横坐标不变,纵坐标乘﹣1后得到的△;(3)点的坐标是;点的坐标是.2、已知,平分,点分别在上.(1)如图1,若于点,于点.①利用等腰三角形“三线合一”,将补成一个等边三角形,可得的数量关系为________.②请问:是否等于呢?如果是,请予以证明.(2)如图2,若,则(1)中的结论是否仍然成立?若成立,请予以证明;若不成立,请说明理由.3、如图,是边长为1的等边三角形,,,点,分别在,上,且,求的周长.4、如图,在△ABC中,AB=AC,D,E是BC边上的点,连接AD,AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD'E,连接D'C,若BD=CD'.(1)求证:△ABD≌△ACD'.(2)若∠BAC=100°,求∠DAE的度数.5、如图,在中,,.(1)在线段上找到一个点,使得.(尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,连接,求证:是等边三角形.-参考答案-一、单选题1、B【解析】【详解】解:作A的对称点,连接B交CD于P,,∴AP+PB=,此时值最小,在中,,,,∵点A到河岸CD的中点的距离为500米,∴B=AP+PB=1000米2、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选:B.【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选D.【考点】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.4、D【解析】【分析】利用关于x轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.【详解】点关于轴对称的点的坐标为(3,-2),故选:D.【考点】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键.5、B【解析】【分析】根据平行线、角平分线和等腰三角形的关系可证DO=DB和EO=EC,从而得出DE=DB+EC,然后根据的周长即可求出AB.【详解】解:∵∴∠OBC=∠DOB∵BO平分∴∠OBC=∠DBO∴∠DOB=∠DBO∴DO=DB同理可证:EO=EC∴DE=DO+EO=DB+EC∵,的周长10,∴AD+AE+DE=10∴AD+AE+DB+EC=10∴AB+AC=10∴AB=10-AC=6故选B.【考点】此题考查的是平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行线、角平分线和等腰三角形的关系是解决此题的关键.6、A【解析】【分析】设另一个角是x,表示出一个角是2x-20°,然后分①x是顶角,2x-20°是底角,②x是底角,2x-20°是顶角,③x与2x-20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【详解】设另一个角是x,表示出一个角是2x﹣20°,①x是顶角,2x﹣20°是底角时,x+2(2x﹣20°)=180°,解得x=44°,所以,顶角是44°;②x是底角,2x﹣20°是顶角时,2x+(2x﹣20°)=180°,解得x=50°,所以,顶角是2×50°﹣20°=80°;③x与2x﹣20°都是底角时,x=2x﹣20°,解得x=20°,所以,顶角是180°﹣20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故选:A.【考点】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.7、C【解析】【分析】根据直角三角形的性质30°所对的直角边等于斜边的一半求解即可.【详解】∵在Rt△ABC中,,,∴,∴∵,∴3BC=12cm.∴BC=4cm∴AB=8cm故选:C【考点】本题考查了含30度角的直角三角形的性质,掌握含30度角的直角三角形的性质是解题的关键.8、C【解析】【分析】直接利用关于x轴对称点的性质:横坐标相同,纵坐标互为相反数进而得出答案.【详解】解:∵点P(2021,﹣2021),∴点P关于x轴对称的点的坐标是(2021,2021).故选:C.【考点】此题考查关于x轴、y轴对称的点的坐标,熟记关于轴对称坐标的特点是解题的关键.9、A【解析】【分析】根据翻三角形全等的性质一一判断即可.【详解】解:∵△ABC≌△ADE,∴AD=AB,AE=AC,BC=DE,∠ABC=∠ADE,∴∠BAD=∠CAE,∵AD=AB,∴∠ABD=∠ADB,∴∠BAD=180°-∠ABD-∠ADB,∴∠CDE=180°-∠ADB-ADE,∵∠ABD=∠ADE,∴∠BAD=∠CDE故B、C、D选项不符合题意,故选:A.【考点】本题考了三角形全等的性质,解题的关键是三角形全等的性质.10、B【解析】【分析】先由等腰三角形的性质和三角形的内角和定理求出∠BCA,进而求得∠ACD,由作图痕迹可知CE为∠ACD的平分线,利用角平分线定义求解即可.【详解】∵在中,,∴,∴∠ACD=180°-∠ACB=180°-50°=130°,由作图痕迹可知CE为∠ACD的平分线,∴,故选:B.【考点】本题考查了等腰三角形的性质、三角形的内角和定理、角平分线的定义和作法,熟练掌握等腰三角形的性质以及角平分线的尺规作图法是解答的关键.二、填空题1、##50度【解析】【分析】根据作图可知,,根据直角三角形两个锐角互余,可得,根据即可求解.【详解】解:∵在中,,,∴,由作图可知是的垂直平分线,,,,故答案为:.【考点】本题考查了基本作图,垂直平分线的性质,等边对等角,直角三角形的两锐角互余,根据题意分析得出是的垂直平分线,是解题的关键.2、105°.【解析】【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.【详解】∵AD∥BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=50°,∴∠ADB=∠BDG=25°,又∵∠2=50°,∴△ABD中,∠A=105°,∴∠A'=∠A=105°,故答案为105°.【考点】本题考查了平行四边形的性质,折叠的性质,三角形的外角性质,三角形内角和定理.3、100【解析】【分析】先根据EC=EA.∠CAE=40°得出∠C=40°,再由三角形外角的性质得出∠AED的度数,利用平行线的性质即可得出结论.【详解】∵EC=EA,∠CAE=40°,∴∠C=∠CAE=40°,∵∠DEA是△ACE的外角,∴∠AED=∠C+∠CAE=40°+40°=80°,∵AB∥CD,∴∠BAE+∠AED=180°∴∠BAE=100°.【考点】本题考查的是等边对等角,三角形的外角,平行线的性质,熟知两直线平行同旁内角互补是解答此题的关键.4、80°【解析】【分析】如图,分别作P关于OM、ON的对称点,然后连接两个对称点即可得到A、B两点,由此即可得到△PAB的周长取最小值时的情况,并且求出∠APB度数.【详解】解:如图,分别作P关于OM、ON的对称点P1、P2,然后连接两个对称点即可得到A、B两点,∴△PAB即为所求的三角形,根据对称性知道:∠APO=∠AP1O,∠BPO=∠BP2O,还根据对称性知道:∠P1OP2=2∠MON,OP1=OP2,而∠MON=50°,∴∠P1OP2=100°,∴∠AP1O=∠BP2O=40°,∴∠APB=2×40°=80°.故答案为80°.5、(-3,0)【解析】【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴对称的点的坐标为(-3,0).故答案为:(-3,0).【考点】本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.6、6【解析】【分析】作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2,与OA的交点即为点M,与OB的交点即为点N,则此时M、N符合题意,求出线段P1P2的长即可.【详解】解:作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2与OA的交点即为点M,与OB的交点即为点N,△PMN的最小周长为PM+MN+PN=P1M+MN+P2N=P1P2,即为线段P1P2的长,连结OP1、OP2,则OP1=OP2=OP=6,又∵∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形,∴P1P2=OP1=6,即△PMN的周长的最小值是6.故答案是:6.【考点】本题考查了等边三角形的性质和判定,轴对称−最短路线问题的应用,关键是确定M、N的位置.7、40°##40度【解析】【分析】根据入射角等于反射角,可得,根据三角形内角和定理求得,进而即可求解.【详解】解:依题意,,∵,,,∴,.故答案为:40.【考点】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键.8、(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3)【解析】【详解】试题解析:如图所示:(此时不是四边形,舍去),故答案为9、4【解析】【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,,,则a+b的值是:,故答案为.【考点】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.10、2a+3b【解析】【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长为:AB+AC+BC=2a+3b.【详解】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB−∠ECA=36°,∴∠BEC=180°−∠ABC−∠ECB=72°,∴CE=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b故答案为2a+3b.【考点】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.三、解答题1、(1)见解析

(2)见解析

(3)(﹣4,﹣1);(﹣4,1)【解析】【分析】(1)△ABC的各点纵坐标不变,横坐标乘-1后的坐标首先写出,然后在数轴上表示出来,顺次连接;(2)△A1B1C1的各点横坐标不变,纵坐标乘-1后的坐标首先写出,然后在数轴上表示出来,顺次连接;(3)根据(1)(2)即可直接写出.【详解】(1)A1的坐标是(-1,-4),B1的坐标是(-5,-4),C1的坐标是(-4,-1),如图,△A1B1C1为所作;(2)A2的坐标是(-1,4),B2的坐标是(-5,4),C2的坐标是(-4,1),如图,△A2B2C2为所作;(3)C1的坐标是(﹣4,﹣1),C2的坐标是(﹣4,1).故答案是:(﹣4,﹣1),(﹣4,1).【考点】本题考查了坐标与图形的变化-轴对称变换,根据题目的叙述求得△A1B1C1和△A2B2C2的坐标是解题的关键.2、(1)①(或),理由见解析;②,理由见解析;(2)仍成立,理由见解析【解析】【分析】(1)①由题意利用角平分线的性质以及含角的直角三角形性质进行分析即可;②根据题意利用①的结论进行等量代换求解即可;(2)根据题意过点分别作的垂线,垂足分别为,进而利用全等三角形判定得出,以此进行分析即可.【详解】解:(1)①(或)平分,,又,利用等腰三角形“三线合一”,将补成一个等边三角形,可知②证明:由①知,同理,平分,,又,,(2)仍成立证明:过点分别作的垂线,垂足分别为平分,又由(1)中②知.【考点】本题考查等腰三角形性质以及全等三角形判定,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论