




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《轴对称》综合练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、以下四个标志,每个标志都有图案和文字说明,其中的图案是轴对称图形是(
)A. B.C. D.2、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF,则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有(
)A.①②③ B.①②④ C.①③④ D.①②③④3、给出下列命题,正确的有(
)个①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形A.1个 B.2个 C.3个 D.4个4、如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(A、P、A′不共线),下列结论中错误的是(
)A.△AA′P是等腰三角形 B.MN垂直平分AA′、CC′C.△ABC与△A′B′C′面积相等 D.直线AB,A′B′的交点不一定在直线MN上5、下列图案是几家银行的标志,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个6、点A(2,-1)关于y轴对称的点B的坐标为(
)A.(2,1) B.(-2,1) C.(2,-1) D.(-2,-1)7、如图,在中,,的周长10,和的平分线交于点,过点作分别交、于、,则的长为(
)A.10 B.6 C.4 D.不确定8、如图,中,∠BCA=90°,∠ABC=22.5°,将沿直线BC折叠,得到点A的对称点A′,连接BA′,过点A作AH⊥BA′于H,AH与BC交于点E.下列结论一定正确的是(
)A.A′C=A′H B.2AC=EB C.AE=EH D.AE=A′H9、观察下列作图痕迹,所作线段为的角平分线的是(
)A. B.C. D.10、如图是4×4的正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,与原来3个黑色方格组成的图形成为轴对称图形,则符合要求的白色小正方格有()A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、如图,在△ABC中,AB=AC=10,BC=12,AD⊥BC于点D,点E、F分别是线段AB、AD上的动点,且BE=AF,则BF+CE的最小值为_____.2、如图,RtABC中,∠C=90°,D是BC的中点,∠CAD=30°,BC=6,则AD+DB的长为____.3、如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=_______°.4、如图,在△ABC中,∠ACB的平分线交AB于点D,
DE⊥AC于点E,F为BC上一点,若DF=AD,△ACD与△CDF的面积分别为10和4,则△AED的面积为______5、如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置)测得的相关数据为:米,则________米.6、如图,依据尺规作图的痕迹,计算∠α=________°.7、如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是_____.8、已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.9、如图,一个等腰直角三角尺的两个顶点恰好落在笔记本的两条横线a,b上.若,,则__________.10、如图,在中,,点,都在边上,,若,则的长为_______.三、解答题(5小题,每小题6分,共计30分)1、如图,在中,AB=AC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,∠DAC的平分线交DM于点F.求证:AF=CM.2、如图,在△ABC中,AB=AC,点D是BC的中点,连接AD,过点C作CE∥AD,交BA的延长线于点E.(1)求证:EC⊥BC;(2)若∠BAC=120°,试判定△ACE的形状,并说明理由.3、(1)已知等腰三角形的两边长分别为9cm和15cm,则周长为多少?(2)已知等腰三角形的两边长分别为6cm和15cm,则周长为多少?4、如图,在△ABC中,AB=AC,D,E是BC边上的点,连接AD,AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD'E,连接D'C,若BD=CD'.(1)求证:△ABD≌△ACD'.(2)若∠BAC=100°,求∠DAE的度数.5、如图,是边长为1的等边三角形,,,点,分别在,上,且,求的周长.-参考答案-一、单选题1、D【解析】【分析】根据轴对称图形的定义判断即可【详解】∵A,B,C都不是轴对称图形,∴都不符合题意;D是轴对称图形,符合题意,故选D.【考点】本题考查了轴对称图形的定义,准确理解轴对称图形的定义是解题的关键.2、D【解析】【分析】证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确.【详解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正确;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC与AG所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正确,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正确.故选:D.【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键.3、B【解析】【详解】解:①等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;②等腰三角形两腰上的高相等,本选项正确;③等腰三角形最小边不一定底边,故本选项错误;④等边三角形的高、中线、角平分线都相等,本选项正确;⑤等腰三角形可以是钝角三角形,故本选项错误,故选B4、D【解析】【分析】据对称轴的定义,△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,可以判断出图中各点或线段之间的关系.【详解】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,故A、B、C选项正确,直线AB,A′B′关于直线MN对称,因此交点一定在MN上,故D错误,故选:D.【考点】本题主要考查了轴对称性质的理解和应用,准确分析判断是解题的关键.5、C【解析】【分析】根据轴对称图形的概念“如果一个图形沿着一条直线折叠,直线两旁的部分能够相互重合的图形”可直接进行排除选项.【详解】解:都是轴对称图形,而不是轴对称图形,所以是轴对称图形的有3个;故选C.【考点】本题主要考查轴对称图形的识别,熟练掌握轴对称图形的概念是解题的关键.6、D【解析】【分析】根据点坐标关于轴对称的变换规律即可得.【详解】解:点坐标关于轴对称的变换规律:横坐标互为相反数,纵坐标相同.则点关于轴对称的点的坐标为,故选:D.【考点】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键.7、B【解析】【分析】根据平行线、角平分线和等腰三角形的关系可证DO=DB和EO=EC,从而得出DE=DB+EC,然后根据的周长即可求出AB.【详解】解:∵∴∠OBC=∠DOB∵BO平分∴∠OBC=∠DBO∴∠DOB=∠DBO∴DO=DB同理可证:EO=EC∴DE=DO+EO=DB+EC∵,的周长10,∴AD+AE+DE=10∴AD+AE+DB+EC=10∴AB+AC=10∴AB=10-AC=6故选B.【考点】此题考查的是平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行线、角平分线和等腰三角形的关系是解决此题的关键.8、B【解析】【分析】证明,即可得出正确答案.【详解】证明:∵∠BCA=90°,∠ABC=22.5°∴,∵沿直线BC折叠,得到点A的对称点A′,连接BA′,∴,∴,∵∠BCA=90°,∴,∵∴,即:,∴,∵AH⊥BA′,∴是等腰直角三角形,∴,,∴,在和中,∵,∴,∴,故选项正确,故选;.【考点】本题考查了折叠、等腰三角形、等腰直角三角形、三角形全等,解决本题的关键是证明全等,得出线段.9、C【解析】【分析】根据角平分线画法逐一进行判断即可.【详解】:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为的角平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:C.【考点】本题考查点到直线距离的画法,角平分线的画法,中垂线的画法,能够区别彼此之间的不同是解题切入点.10、C【解析】【分析】根据轴对称的性质可直接进行求解.【详解】解:如图所示:,共3个,故选:C.【考点】本题主要考查轴对称图形的性质,熟练掌握轴对称的性质是解题的关键.二、填空题1、【解析】【分析】过点作,使,连接,,可证明,则当、、三点共线时,的值最小,最小值为,求出即可求解.【详解】解:过点作,使,连接,,,,,,,,,当、、三点共线时,的值最小,,,,在中,,故答案为:.【考点】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,通过构造三角形全等,将所求的问题转化为将军饮马求最短距离是解题的关键.2、9【解析】【分析】根据∠CAD=30°,得到AD=2CD,从而得到AD+BD=3CD,求得CD即可.【详解】∵∠C=90°,D是BC的中点,∠CAD=30°,BC=6,∴AD=2CD,BD=CD=BC=3,∴AD+BD=3CD=9,故答案为:9.【考点】本题考查了直角三角形的性质,线段中点即线段上一点,把这条线段分成相等的两条线段的点,熟练掌握直角三角形的性质是解题的关键.3、45【解析】【详解】解:∵DE垂直平分AB,∴AE=BE.∵BE⊥AC,∴△ABE是等腰直角三角形.∴∠BAC=∠ABE=45°.又∵AB=AC,∴∠ABC=(180°-∠BAC)=(180°-45°)=67.5°.∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°.∵AB=AC,AF⊥BC,∴BF=CF又∵BE⊥AC∴EF=BF.∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°故答案为:45.4、3【解析】【分析】如图(见解析),过点D作,根据角平分线的性质可得,再利用三角形全等的判定定理得出,从而有,最后根据三角形面积的和差即可得出答案.【详解】如图,过点D作平分,又则解得故答案为:3.【考点】本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键.5、48【解析】【分析】先说明△ABC是等边三角形,然后根据等边三角形的性质即可解答.【详解】解:∵∴∠BAC=180°-60°-60°=60°∴∠BAC=∠ABC=∠BCA=60°∴△ABC是等边三角形∴AC=BC=48米.故答案为48.【考点】本题考查了等边三角形的判定和性质,证得△ABC是等边三角形是解答本题的关键.6、56【解析】【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【详解】如图,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°-34°=56°,∴∠α=56°.故答案为:56.7、3【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠DAB=∠B,然后根据角平分线的定义与直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出BD,然后求解即可.【详解】解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=30°,∴BD=2DE=2,∴BC=BD+CD=1+2=3,故答案为3.【考点】本题考查了角平分线的定义和性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,属于基础题,熟记性质是解题的关键.8、4.【解析】【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为4.【考点】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.9、25°【解析】【分析】求出∠3=25°,根据平行线的性质可得出.【详解】解:如图,∵△ABC是等腰直角三角形,∴∠BAC=45°,即∵∠1=20°∴∠3=25°∵∴∠2=∠3=25°故答案为:25°【考点】此题主要考查了平行线的性质和等腰直角三角形的性质,熟练掌握蜀道难突然发觉解答此题的关键.10、9.【解析】【分析】根据等腰三角形的性质及全等三角形的判定与性质即可求解.【详解】因为△ABC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD△ACE(ASA),所以BD=EC,EC=9.【考点】此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与性质.三、解答题1、证明见解析.【解析】【分析】先根据等腰三角形的性质可得,再根据三角形的外角性质可得,然后根据角平分线的定义得,最后根据三角形全等的判定定理与性质即可得证.【详解】∵,∴,∴,∵AF是的平分线,∴,∵E是AC的中点,∴,在和中,,∴,∴.【考点】本题考查了等腰三角形的性质、角平分线的定义、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.2、(1)见详解(2)见详解【解析】【分析】(1)根据等腰三角形三线合一的性质得到AD⊥BC,然后根据CE∥AD即可得到结论;(2)根据∠BAC=120°,得到∠BAD=60°,∠EAC=60°,由CE∥AD得到∠EAC=∠E=∠ECA=60°,即可证得结论.(1)证明:∵AB=AC,点D是BC的中点,∴AD⊥BC,又∵CE∥AD,∴EC⊥BC;(2)解:△ACE是等边三角形,理由如下:∵∠BAC=120°,∴∠BAD=∠BAC=60°,∠EAC=60°,又∵CE∥AD,∴∠E=60°,∴∠EAC=∠E=∠ECA=60°,∴△ACE是等边三角形.【考点】本题考查了等腰三角形的性质,平行线的性质,等边三角形的判定,熟练掌握性质定理是解题的关键.3、(1)33cm或39cm;(2)36cm.【解析】【分析】(1)根据等腰三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建龙岩市上杭县文化旅游发展有限公司(上杭古田建设发展有限公司)所属企业招聘拟聘用人选(二)考前自测高频考点模拟试题及答案详解(各地真题)
- 广西医生人文考试题库及答案
- 初任法官考试题库及答案
- 功能医学考试题库及答案大全图片
- 证券合同证券承销的规则5篇
- 防水工程考试题及答案
- 云南焊工考试题库及答案
- 企业合同范本与审核要点
- 辽宁专本连读考试题库及答案
- 日报社笔试考试题目及答案
- 2025重庆明德商业保理有限公司招聘1人考试参考试题及答案解析
- 仁怀市中小学校长绩效考核的实施方案a
- 2025年七年级语文上册《陈太丘与友期行》文言文对比阅读训练含答案
- 2025年气象系统公务员录用考试面试真题模拟试卷(结构化小组)
- 风力发电项目审批流程及要点梳理
- 跨境电商第三方物流合作中的三方保密协议及责任划分
- 医院污水站维护方案(3篇)
- 2019ESCEAS血脂异常管理指南2025重点更新解读
- 视频监控考核管理办法
- 《现代传感与检测技术》教学大纲
- StarterUnit3Wele!SectionB1a1e(教学设计)人教版七年级英语上册
评论
0/150
提交评论