2025年吉林省和龙市中考数学考前冲刺练习试题附完整答案详解【典优】_第1页
2025年吉林省和龙市中考数学考前冲刺练习试题附完整答案详解【典优】_第2页
2025年吉林省和龙市中考数学考前冲刺练习试题附完整答案详解【典优】_第3页
2025年吉林省和龙市中考数学考前冲刺练习试题附完整答案详解【典优】_第4页
2025年吉林省和龙市中考数学考前冲刺练习试题附完整答案详解【典优】_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省和龙市中考数学考前冲刺练习试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为()A. B. C.3 D.2、如图,G是正方形ABCD内一点,以GC为边长,作正方形GCEF,连接BG和DE,试用旋转的思想说明线段BG与DE的关系()A.DE=BG B.DE>BG C.DE<BG D.DE≥BG3、在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()A.(50﹣2x)(40﹣2x)=3000 B.(50+2x)(40+2x)=3000C.(50﹣x)(40﹣x)=3000 D.(50+x)(40+x)=30004、下列事件为必然事件的是()A.明天要下雨B.a是实数,|a|≥0C.﹣3<﹣4D.打开电视机,正在播放新闻5、已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积是()A. B.π﹣2 C.1+ D.1﹣二、多选题(5小题,每小题3分,共计15分)1、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:x…-10123…y…30-1m3…①抛物线开口向下;②抛物线的对称轴为直线;③方程的两根为0和2;④当时,x的取值范围是或.正确的是(

)A.① B.② C.③ D.④2、如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,则下列结论中正确的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°3、下列关于x的一元二次方程中,没有两个不相等的实数根的方程是(

)A. B. C. D.4、在图所示的4个图案中不包含图形的旋转的是(

)A. B. C. D.5、如图,抛物线过点,对称轴是直线.下列结论正确的是(

)A.B.C.若关于x的方程有实数根,则D.若和是抛物线上的两点,则当时,第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.2、一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是_____.3、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).4、如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.5、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为_____.四、简答题(2小题,每小题10分,共计20分)1、已知:如图,△ABC中,AB=AC,AB>BC.求作:线段BD,使得点D在线段AC上,且∠CBD=∠BAC.作法:①以点A为圆心,AB长为半径画圆;②以点C为圆心,BC长为半径画弧,交⊙A于点P(不与点B重合);③连接BP交AC于点D.线段BD就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接PC.∵AB=AC,∴点C在⊙A上.∵点P在⊙A上,∴∠CPB=∠BAC.()(填推理的依据)∵BC=PC,∴∠CBD=.()(填推理的依据)∴∠CBD=∠BAC.2、在矩形中,于点,点是边上一点.(1)若平分,交于点,PF⊥BD,如图(1),证明四边形是菱形;(2)若,如图(2),求证:.五、解答题(4小题,每小题10分,共计40分)1、解下列方程.(1)x2+2x=0;(2)2x2-3x-1=0.2、已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.3、如图,是由若干个完全相同的小正方体组成的一个几何体.从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.4、已知m是方程的一个根,试求的值.-参考答案-一、单选题1、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接,,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.2、A【解析】【分析】根据四边形ABCD为正方形,得出BC=DC,∠BCD=90°,根据四边形CEFG为正方形,得出GC=EC,∠GCE=90°,再证∠BCG=∠DCE,△BCG与△DCE具有可旋转的特征即可【详解】解:∵四边形ABCD为正方形,∴BC=DC,∠BCD=90°,∵四边形CEFG为正方形,∴GC=EC,∠GCE=90°,∵∠BCG+∠GCD=∠GCD+∠DCE=90°,∴∠BCG=∠DCE,∴△BCG绕点C顺时针方向旋转90°得到△DCE,∴BG=DE,故选项A.【考点】本题考查图形旋转特征,正方形性质,三角形全等条件,同角的余角性质,掌握图形旋转特征,正方形性质,三角形全等条件是解题关键.3、B【解析】【分析】根据题意表示出矩形挂画的长和宽,再根据长方形的面积公式可得方程.【详解】解:设边框的宽为xcm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B.【考点】本题主要考查由实际问题抽象出一元二次方程,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.4、B【分析】根据事情发生的可能性大小进行判断,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】A.明天要下雨,是随机事件,不符合题意;B.a是实数,|a|≥0,是必然事件,符合题意;C.﹣3<﹣4,是不可能事件,不符合题意D.打开电视机,正在播放新闻,是随机事件,不符合题意故选B【点睛】本题考查了必然事件,随机事件,不可能事件,实数的性质,有理数大小比较,掌握相关知识是解题的关键.5、B【解析】【分析】如图,标注顶点,连接AB,由图形的对称性可得阴影部分面积=S扇形AOB-S△ABO,从而可得答案.【详解】解:标注顶点,连接AB,由对称性可得:阴影部分面积=S扇形AOB-S△ABO=.故选:B.【考点】本题考查的是阴影部分的面积的计算,扇形面积的计算,掌握“图形的对称性”是解本题的关键.二、多选题1、CD【解析】【分析】根据表格可知直线x=1是抛物线对称轴,此时有最小值,与x轴交点坐标为(0,0)(2,0)据此可判断①②③,根据与x轴交点坐标结合开口方向可判断④.【详解】解:从表格可以看出,函数的对称轴是直线x=1,顶点坐标为(1,﹣1),此时有最小值∴函数与x轴的交点为(0,0)、(2,0),∴抛物线y=ax2+bx+c的开口向上故①错误;抛物线y=ax2+bx+c的对称轴为直线x=1故②错误;方程ax2+bx+c=0的根为0和2故③正确;当y>0时,x的取值范围是x<0或x>2故④正确;故选CD.【考点】本题考查了二次函数的图象和性质.解题的关键在于根据表格获取正确的信息.2、ABCD【解析】【分析】连接OD,CD是⊙O的切线,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等边三角形,∠C=∠BDC=30°,再结合在直角三角形中300所对的直角边等于斜边的一半,继而得到结论.【详解】解:如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故选项D成立;∴△OBD是等边三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故选项B成立;∴AB=2BC,故选项C成立;∴∠A=∠C,∴DA=DC,故选项A成立;综上所述,故选项ABCD均成立,故选:ABCD.【考点】本题考查了圆的有关性质的综合应用,在本题中借用切线的性质,求得相应角的度数是解题的关键.3、ABC【解析】【分析】根据根的判别式Δ=b2-4ac的值的符号,可以判定个方程实数根的情况,注意排除法在解选择题中的应用.【详解】解:A、∵Δ=b2-4ac=02-4×1×4=-16<0,∴此方程没有实数根,故本选项符合题意;B、∵Δ=b2-4ac=(-4)2-4×1×4=0,∴此方程有两个相等的实数根,故本选项符合题意;C、∵Δ=b2-4ac=12-4×1×3=-11<0,∴此方程没有实数根,故本选项符合题意;D、∵Δ=b2-4ac=22-4×1×(-1)=8>0,∴此方程有两个不相等的实数根,故本选项不符合题意;故选:ABC.【考点】本题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.4、AC【解析】【分析】根据中心对称与轴对称的概念,即可求解.【详解】解:A、是轴对称图形,故本选项符合题意;B、是中心对称图形,属于图形的旋转,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、既是轴对称图形,也是中心对称图形,包含图形的旋转,故本选项不符合题意;故选:AC.【考点】本题主要考查了中心对称与轴对称的概念,熟练掌握轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合是解题的关键.5、D【解析】【详解】解:A.∵抛物线开口向下,∴a<0,∵对称轴在y轴左侧,∴a、b同号,∴b<0,∵抛物线与y轴交点在正半轴上,∴c>0,∴abc>0,故此选项不符合题意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵抛物线过点,对称轴是直线,∴抛物线与x轴另一交点为(2,0),∴当x=2时,y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此选项不符合题意;C.∵-=-1,∴b=2a,∵当x=2时,y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵关于x的方程有实数根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此选项不符合题意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴点(x1,y1)到对称轴的距离大于点(x2,y2)到对称轴的距离,∴y1<y2,故此选项符合题意;故选:D.【考点】本题考查二次函数图象与系数的关系,二次函数的性质,二次函数与一元二次方程的联系,熟练掌握二次函数图象性质是解题的关键.三、填空题1、【分析】先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【详解】解:∵BC是圆O的切线,∴∠OBC=90°,∵四边形ABCO是平行四边形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案为:22.5°.【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.2、60π【解析】【分析】利用圆锥的侧面积公式:,求出圆锥的母线即可解决问题.【详解】解:圆锥的母线,∴圆锥的侧面积=π×10×6=60π,故答案为:60π.【考点】本题考查了圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的侧面积公式.3、20【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.【详解】∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案为20.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.4、【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为通过以上条件可设顶点式,其中可通过代入A点坐标代入到抛物线解析式得出:所以抛物线解析式为当水面下降2米,通过抛物线在图上的观察可转化为:当时,对应的抛物线上两点之间的距离,也就是直线与抛物线相交的两点之间的距离,可以通过把代入抛物线解析式得出:解得:

所以水面宽度增加到米,比原先的宽度当然是增加了故答案是:【考点】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.5、【分析】连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.【详解】解:如图所示,连接OB,交AC于点D,∵四边形OABC为平行四边形,,∴四边形OABC为菱形,∴,,,∵,∴为等边三角形,∴,∴,在中,设,则,∴,即,解得:或(舍去),∴的长为:,故答案为:.【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.四、简答题1、(1)见解析;(2)圆周角定理;,圆周角定理的推论【解析】【分析】(1)利用几何语言画出对应的几何图形;(2)先根据圆周角定理得到,再利用等腰三角形的性质得到,从而得到.【详解】解:(1)如图,为所作;(2)证明:连接,如图,,点在上.点在上,(圆周角定理),,(圆周角定理的推论).故答案为:圆周角定理;;圆周角定理的推论.【考点】本题考查了作图复杂作图、也考查了圆周角定理,解题的关键是掌握复杂作图的五种基本作图的基本方法,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.2、(1)见解析;(2)见解析【解析】【分析】(1)想办法证明AG=PF,AG∥PF,推出四边形AGFP是平行四边形,再证明PA=PF即可解决问题.(2)证明△AEP∽△DEC,可得,由此即可解决问题.【详解】解:(1)∵平分,,,∴,,又∵在中,,在中,∴,又∵,∴,∴,∴,∵,,∴AG∥PF,∴四边形是平行四边形,∴四边形AGFP是菱形;(2)∵,,∴,,∴,又∵,,∴,∴,∴,∴,又∵,∴.【考点】本题主要考查了角平分线的性质,菱形的判定,相似三角形的性质与判定,矩形的性质,解题的关键在于能够熟练掌握相关知识进行求解.五、解答题1、(1)x1=-2,x2=0.(2)x1=,x2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论