




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》单元测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在中,点D是BC边上一点,已知,,CE平分交AB于点E,连接DE,则的度数为(
)A. B. C. D.2、如图,在和中,,,,则(
)A.30° B.40° C.50° D.60°3、下列说法正确的是(
)①近似数精确到十分位;②在,,,中,最小的是;③如图所示,在数轴上点所表示的数为;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点.A.1 B.2 C.3 D.44、“经过已知角一边上的一点作“个角等于已知角”的尺规作图过程如下:已知:如图(1),∠AOB和OA上一点C.求作:一个角等于∠AOB,使它的顶点为C,一边为CA.作法:如图(2),(1)在0A上取一点D(OD<OC),以点O为圆心,OD长为半径画弧,交OB于点E;(2)以点C为圆心,OD长为半径画弧,交CA于点F,以点F为圆心,DE长为半径画弧,两弧交于点C;(3)作射线CC.所以∠CCA就是所求作的角此作图的依据中不含有()A.三边分别相等的两个三角形全等 B.全等三角形的对应角相等C.两直线平行同位角相等 D.两点确定一条直线5、如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为(
)A. B. C.10 D.8第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在△ABC中,BD=CD,BE交AD于F,AE=EF,若BE=7CE,,则BF=_______.2、如图,在平面直角坐标系中,将沿轴向右平移后得到,点A的坐标为,点A的对应点在直线上,点在的角平分线上,若四边形的面积为4,则点的坐标为________.3、如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分别为E,D,AD=25,DE=17,则BE=_____.4、如图,已知∠1=∠2、AD=AB,若再增加一个条件不一定能使结论成立,则这个条件是_____.5、已知:如图,是上一点,平分,,若,则________.(用的代数式表示)三、解答题(5小题,每小题10分,共计50分)1、已知:RtABC中,∠B=90°,D是BC上一点,DF⊥BC交AC于点H,且DF=BC,FG⊥AC交BC于点E.求证:AB=DE.2、如图,在中,,点在边上,使,过点作,分别交于点,交的延长线于点.求证:.3、已知如图,E.F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分.4、如图,在中,是边上的一点,,平分,交边于点,连接.(1)求证:;(2)若,,求的度数.5、中,,,点是边上的一个动点,连接,过点作于点.(1)如图1,分别延长,相交于点,求证:;(2)如图2,若平分,,求的长;(3)如图3,是延长线上一点,平分,试探究,,之间的数量关系并说明理由.-参考答案-一、单选题1、B【解析】【分析】过点E作于M,于N,于H,如图,先计算出,则AE平分,根据角平分线的性质得,再由CE平分得到,则,于是根据角平分线定理的逆定理可判断DE平分,再根据三角形外角性质解答即可.【详解】解:过点E作于M,于N,于H,如图,∵,,∴,∴平分,∴,∵平分,∴,∴,∴平分,∴,∵由三角形外角可得:,,∴,而,∴.故选:B.【考点】本题考查了角平分线的性质和判定定理,三角形的外角性质定理,解决本题的关键是运用角平分线定理的逆定理证明DE平分.2、D【解析】【分析】由题意可证,有,由三角形内角和定理得,计算求解即可.【详解】解:∵∴△ABC和△ADC均为直角三角形在和中∵∴∴∵∴故选D.【考点】本题考查了三角形全等,三角形的内角和定理.解题的关键在于找出角度的数量关系.3、B【解析】【分析】根据近似数的精确度定义,可判断①;根据实数的大小比较,可判断②;根据点在数轴上所对应的实数,即可判断③;根据反证法的概念,可判断④;根据角平分线的性质,可判断⑤.【详解】①近似数精确到十位,故本小题错误;②,,,,最小的是,故本小题正确;③在数轴上点所表示的数为,故本小题错误;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;⑤在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确.故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键.4、C【解析】【分析】根据题意知,作图依据有全等三角形的判定定理SSS,全等三角形的性质和两点确定一条直线,直接判断即可.【详解】解:由题意可得:由全等三角形的判定定理SSS可以推知△EOD≌△GCF,故A正确;结合该全等三角形的性质对应角相等,故B正确;作射线CG,利用两点确定一条直线,故D正确;故选:C.【考点】本题考查作一个角等于已知角和三角形全等的判定与性质,解题关键是明确作图原理,准确进行判断.5、A【解析】【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【详解】解:如图,连结AE,设AC交EF于O,依题意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因为EF为线段AC的中垂线,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考点】本题考查了全等三角形的判定、勾股定理,熟练掌握是解题的关键.二、填空题1、或【解析】【分析】延长AD至G,使DG=AD,连接BG,可证明,则BG=AC,,根据AE=EF,得到,可证出,即得出AC=BF,从而得出BF的长.【详解】解:如图,延长AD至G,使DG=AD,连接BG,在和中,∴∴BG=AC,,又∵AE=EF,∴,又∵,∴,∴,∴BG=BF,∴AC=BF,又∵BE=7CE,AE=,∴BF+EF=,即BF+=,解得BF=.故答案为:【考点】本题考查了全等三角形的判定和性质,证明线段相等,一般转化为证明三角形全等,正确地作出辅助线构造全等三角形是解题的关键.2、【解析】【分析】先求出点坐标,由此可知平移的距离,根据四边形的面积为4,可求出点坐标和平移的方向、距离,则可求B′点坐标.【详解】解:∵沿轴向右平移后得到,∴点与点是纵坐标相同,是4,把代入中,得到,∴点坐标为(4,4),∴点是沿轴向右平移4个单位,过点作,,∵点在的角平分线上,且,四边形的面积为4,∴∴∴∴点坐标为(1,3),根据平移的性质可知点B也是向右平移4个单位得到.∵点(1,3),∴B′(5,3).故答案为:(5,3).【考点】本题主要考查了一次函数图象上点的坐标特征、平移性质,通过求平移后的坐标得到平移的距离是解决本题的的关键.3、8【解析】【分析】可先证明△BCE≌△CAD,可求得CE=AD,结合条件可求得CD,则可求得BE.【详解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,又∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在△CBE和△ACD中,,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD=25,∵DE=17,∴CD=CE﹣DE=AD﹣DE=25﹣17=8,∴BE=CD=8;故答案为:8.【考点】本题主要考查全等三角形的判定和性质;证明三角形全等得出对应边相等是解决问题的关键.4、DE=BC【解析】【分析】根据题目中的条件可以得到,再增加条件则不一定成立,从而可以解答本题.【详解】增加的条件为理由:∵∴∴∵∴不一定成立故答案为:.【考点】本题考查了三角形全等的判定定理,熟记并灵活运用各种判定方法是解题关键.5、【解析】【分析】过点D分别作DE⊥AB,DF⊥AC,根据角平分线的性质得到DE=DF,根据表示出DE的长度,进而得到DF的长度,然后即可求出的值.【详解】如图,过点D分别作DE⊥AB,DF⊥AC,∵平分,∴DE=DF,∵,∴,∴∴,故答案为:.【考点】此题考查了角平分线的性质定理,三角形面积的表示方法,解题的关键是根据题意正确作出辅助线.三、解答题1、见解析【解析】【分析】根据DF⊥BC,FG⊥AC,可得,由对顶角相等可得,进而根据等角的余角相等可得,再利用ASA证明,即可得证.【详解】证明:DF⊥BC,FG⊥AC,又∵在与中(ASA)AB=DE.【考点】本题考查了三角形全等的性质与判定,等角的余角相等,掌握全等三角形的性质与判定是解题的关键.2、详见解析【解析】【分析】根据得出,再根据,故,证明≌即可证明.【详解】∵,∴.∵,∴.在和中,,∴≌(AAS),∴.【考点】本题考查了直角三角形两锐角互余以及三角形全等的判定和性质,熟练掌握直角三角形两锐角互余以及三角形全等的判定和性质是解题的关键.3、见解析【解析】【分析】根据已知条件易证△ABE≌△DFC,由全等三角形的对应角相等可得∠B=∠D,再利用AAS证明△ABO≌△COD,所以AO=CO,BO=DO,即可证明AC与BD互相平分.【详解】证明:∵BF=DE,∴BF-EF=DE-EF即BE=DF,在△ABE和△DFC中,∴△ABE≌△DFC(SSS),∴∠B=∠D.在△ABO和△CDO中,∴△ABO≌△CDO(AAS),∴AO=CO,BO=DO,即AC与BD互相平分.【考点】本题考查了全等三角形的判定与性质,解题关键是通过证明△ABE≌△DFC得∠B=∠D,为证明△ABO≌△COD提供条件.4、(1)见解析(2)50°【解析】【分析】(1)根据平分,可得,即可求证;(2)根据全等三角形的性质可得,再由三角形外角的性质,即可求解.(1)明:∵平分,∴,在和中,∵,∴;(2)解:∵,∴,∵,∴.【考点】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.5、(1)见解析(2)(3),理由见解析【解析】【分析】(1)欲证明BE=AD,只要证明即可;(2)如图2,分别延长BF,AC交于点E,证,可求;(3)如图3中,分别延长BF,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国移动大同市2025秋招计算机类专业追问清单及参考回答
- 南昌市中石油2025秋招面试半结构化模拟题及答案油气储运与管道岗
- 甘孜自治州中储粮2025秋招财务资产岗高频笔试题库含答案
- 大唐电力牡丹江市2025秋招面试专业追问及参考电气工程岗
- 国家能源昌吉回族自治州2025秋招面试专业追问及参考综合管理岗位
- 无锡市中石油2025秋招心理测评常考题型与答题技巧
- 天门市中储粮2025秋招机电维修岗高频笔试题库含答案
- 中国移动哈尔滨市2025秋招网络优化与维护类专业追问清单及参考回答
- 保定市中石化2025秋招面试半结构化模拟题及答案油田工程技术岗
- 安徽地区中石油2025秋招面试半结构化模拟题及答案法律与合规岗
- 企业食品安全培训课件
- HPV科普讲堂课件
- 港口设施保安培训知识课件
- 电梯维护保养标准作业指导书
- 煤矿安全生产责任制考核制度和考核标准
- PGL喷雾干燥机性能验证报告
- 医师变更注册管理办法
- 网络安全防护策略与加固方案报告模板
- 新产品开发流程及管理制度
- “一网统管”在城市治理协同中的障碍与解决路径研究
- 2025至2030中国电线电缆行业十四五发展分析及投资前景与战略规划报告
评论
0/150
提交评论